

Geometric Neural P Modeling the Spatial Co-od Lingxi Xie¹, Qi Tian², John Flynn³, Jing ¹The Johns Hopkins University

ABSTRACT

Deep Convolutional Neural Networks (CNNs) are playing important roles in state-of-the-art visual recognition. This paper focuses on modeling the spatial co-occurrence of neuron responses, which is less studied in the previous work. For this, we consider the neurons in the hidden layer as neural words, and construct a set of geometric neural phrases on top of them. The idea that grouping neural words into neural phrases is borrowed from the Bag-of-Visual-Words (BoVW) model. Next, the Geometric Neural Phrase Pooling (GNPP) algorithm is proposed to efficiently encode these neural phrases. GNPP acts as a new type of hidden layer, which punishes the isolated neuron responses after convolution, and can be inserted into a CNN model with little extra computational overhead. Experimental results show that GNPP produces significant and consistent accuracy gain in image classification.

CONTRIBUTION

In this paper, we present **Geometric Neural** Phrase Pooling (GNPP), an efficient yet effective algorithm to help CNN training.

GNPP is motivated by one of our previous work, namely Geometric Phrase Pooling (GPP) in the Bag-of-Visual-Words (BoVW) model. GPP works by considering local feature co-occurrence and performing non-linear smoothing. We find that these operations also help network training.

GNPP averages the response of a neuron with the maximal response among its neighboring neurons. This is to penalize the isolated neural responses. We argue that, especially in the high-level layers, isolated responses often correspond to unexpected noise in convolution, because neighboring neurons often share a large part of their receptive fields. Experiments reveal that GNPP often works better on highlevel layers, which verifies our motivation.

GNPP can be considered as an intermediate layer in a CNN structure. Since GNPP does not change the geometric shape of data, it can be inserted, at least in theory, to any position in the neural network. In practice, we only insert it between a convolutional layer and a pooling layer because of our motivation.

GNPP produces **consistent accuracy gain** on several state-of-the-art deep networks for object recognition. Moreover, the extra time (+1.29%) and memory (+2.52%) costs of GNPP are almost negligible. Recently, we also observe that GNPP works well in other CNNbased models such as Faster RCNN or DeepLab.

Neu

- Defined on a hide ✓ X is a 3D cul
- We naturally cor
- A geometric neu

- For each neural
- A D-dimensional

with or without A eagle

-

Heatmap on GNPP-5 layer

Original Image

Heatmap on

conv-5 layer

Heatmap on *conv-5* layer

GNPPNet Heatmap on GNPP-5 layer

³University of California, Los Angeles

THE PROPOSED ALGORITHM

Iral Word and Geome	tric	N	eural F	hrase			- 1					
den layer $\mathbf{X}^{(l)}$ of the CNN. For simplicity, denote $\mathbf{X}^{(l)}$ as \mathbf{X} .												
be with $W \times H \times D$ neurons												
sider the data as a set of <i>D</i> -dimensional neural words												
W,H		MII	nensio				1					
$\mathcal{X} = \left\{ \mathbf{x}_{w,h} \right\}_{w=1,h}$	h=1						1					
ral phrase is a group of	neig	ghb	oring r	neurons	5:		1					
$((k))^K$		•	0				- 1					
$\mathcal{G}_{w,h} = \left\{ \mathbf{x}_{w,h}^{(n)} \right\}_k$	=0						1					
_n : the <i>central word</i>							1					
): the side words located in a small neighborhood of \mathbf{x}_{i}												
$W_{W,h}$												
word, there defines a neural phrase.												
Geometric Neural Phrase Pooling												
l vector for each geometric neural phrase individually												
$\frac{1}{1}$												
$\mathbf{z}_{w,h} = \frac{1}{2} \left[\mathbf{x}_{w,h} + \max_{k \in \mathcal{N}} \left\{ s_{w,h}^{(\kappa)} \times \mathbf{x}_{w,h}^{(\kappa)} \right\} \right]$												
$\kappa > 0$	tion			-			i					
							1					
$s_{w,h}^{(k)} = \sigma^2$, according to	the	re	lative p	ositior	Ì		- 1					
he smoothing narameter												
Neural Responses			LeNet	Resul	ts on I	VINIST	(U)					
dding a GNPP Layer	L1 L2	2 D	T1 (1.0)	T1 (0.9)	T1 (0.8)	T2 (1.0)	Т2					
pig snake turkey			$0.87 \pm .02$	$0.87 \pm .02$	$0.87 \pm .02$	$0.87 \pm .02$	0.87					
		,	$0.72 \pm .04$	$0.73 \pm .03$	$0.70 \pm .05$	$0.71 \pm .06$	0.71					
	$\sqrt{1}$	-	$0.75 \pm .03$	$0.79 \pm .02$	$0.77 \pm .05$	$0.73 \pm .04$	0.75					
Charg 20	VV	√	$0.72 \pm .03$ $0.72 \pm .03$	$0.07 \pm .04$ $0.72 \pm .03$	$0.09 \pm .04$ $0.72 \pm .03$	$0.03 \pm .03$ $0.72 \pm .03$	0.72					
			$0.72 \pm .03$ $0.59 \pm .02$	$0.61 \pm .05$	$0.62 \pm .03$	$0.59 \pm .03$	0.59					
All Install Inc.			$0.63 \pm .03$	$0.62 \pm .07$	0.64 ± .03	$0.62 \pm .05$	0.60					

Number of Epoches

un	g a GN	IPP Layer	L1	L L2	2 D	T1 (1.0)	T1 (0.9)	T1 (0.8)	T2 (1.0)	T2 (0.9)	T2 (0.8)	L1	L2	L3	T1 (1.0)	T1 (0.9)	T1 (0.8)	T2 (1.0)	T2 (0.9)	T2 (0.8)
ig	snake	turkey				$0.87 \pm .02$	$0.87 \pm .02$	$0.87 \pm .02$	0.87 ± .02	$0.87 \pm .02$	$0.87 \pm .02$				$4.63 \pm .06$	$4.63 \pm .06$	$4.63 \pm .06$	4.63 ± .06	$4.63 \pm .06$	4.63 ± .06
						$0.72 \pm .04$	$0.73 \pm .03$	$0.70 \pm .05$	$0.71 \pm .06$	$0.71 \pm .06$	$0.72 \pm .04$				$4.46 \pm .06$	$4.47 \pm .05$	$4.42 \pm .09$	$4.42 \pm .08$	$4.42 \pm .07$	4.43 ± .09
P						$0.75 \pm .03$	$0.79 \pm .02$	$0.77 \pm .05$	$0.73 \pm .04$	$0.75 \pm .04$	$0.73 \pm .05$				$4.15 \pm .08$	$4.18 \pm .01$	$4.17 \pm .07$	$4.08 \pm .10$	$4.19 \pm .07$	$4.20 \pm .05$
						0 . 72 ± .03	0 . 67 ± .04	0 . 69 ± .04	0 . 63 ± .03	0 . 64 ± .03	0 . 67 ± .03				$3.76 \pm .03$	$3.72 \pm .05$	$3.77 \pm .06$	$3.53 \pm .07$	$3.64 \pm .07$	$3.65 \pm .10$
	6 San 18 30					$0.72 \pm .03$	$0.72 \pm .03$	$0.72 \pm .03$	$0.72 \pm .03$	$0.72 \pm .03$	$0.72 \pm .03$				$4.10 \pm .05$	$4.07 \pm .03$	$4.10 \pm .05$	$4.10 \pm .07$	$4.10 \pm .03$	$4.14 \pm .07$
						0.59 ± .02	$0.61 \pm .05$	$0.62 \pm .03$	0.59 ± .03	$0.59 \pm .02$	$0.63 \pm .03$				$3.55 \pm .10$	$3.60 \pm .03$	$3.67 \pm .06$	$3.47 \pm .05$	$3.47 \pm .02$	3.55 ± .09
67	100				√	$0.63 \pm .03$	$0.62 \pm .07$	$0.64 \pm .03$	$0.62 \pm .05$	$0.60 \pm .03$	$0.65 \pm .03$				3 . 43 ± .06	$3.52 \pm .07$	3 . 55 ± .04	3 . 41 ± .03	$3.42 \pm .04$	$3.51 \pm .05$
				√		0 . 58 ± .05	0 . 55 ± .05	0 . 57 ± .02	0 . 54 ± .05	0 . 56 ± .04	0 . 61 ± .05				$3.46 \pm .07$	3 . 47 ± .06	$3.55 \pm .06$	$3.43 \pm .05$	3 . 39 ± .01	3 . 46 ± .03
													_							
	_		L1	L2	L3	T1 (1.0)	T1 (0.9)	T1 (0.8)	T2 (1.0)	T2 (0.9)	T2 (0.8)	L1	L2	L3	T1 (1.0)	T1 (0.9)	T1 (0.8)	T2 (1.0)	T2 (0.9)	T2 (0.8)
						17.07 <u>+</u> .15	17.07 ± .15	$17.07 \pm .15$	$17.07 \pm .15$	$17.07 \pm .15$	$17.07 \pm .15$				44.99 ± .19	44.99 ± .19	44.99 ± .19	44.99 ± .19	44.99 ± .19	44.99 ± .19
						16.67 <u>+</u> .22	16.80 ± .25	$16.84 \pm .12$	$16.65 \pm .19$	$17.03 \pm .15$	$17.04 \pm .17$				$44.62 \pm .17$	$44.53 \pm .45$	$44.78 \pm .06$	44.43 ± .29	$44.58 \pm .36$	$44.58 \pm .52$
						15.79 <u>+</u> .22	$16.09 \pm .17$	15.95 ± .31	15.69 ± .11	$16.07 \pm .27$	15.90 ± .09				43.34 ± .23	43.71 ± .19	43.37 ± .26	43.21 ± .23	43.03 ± .27	$43.37 \pm .30$
	1011					15.49 <u>+</u> .15	15.31 ± .20	15.51 ± .25	$15.27 \pm .10$	15.29 ± .14	$15.28 \pm .16$				43.11 ± .24	42.77 ± .37	42.99 ± .24	42.96 ± .32	42.81 ± .38	43.08 ± .39
						15.82 <u>+</u> .23	$15.76 \pm .18$	$15.98 \pm .14$	$16.05 \pm .29$	15.90 ± .25	15.94 ± .09				$43.99 \pm .07$	$43.63 \pm .11$	$43.50 \pm .26$	$43.38 \pm .37$	43.34 ± .27	43.46 ± .25
nkey	sleigh	crab •				15.15 ± .20	15.29 ± .12	$15.44 \pm .19$	$15.29 \pm .32$	15.19 ± .35	$15.20 \pm .35$				$42.85 \pm .38$	42.81 ± .27	42.82 ± .29	43.08 ± .27	42.79 ± .34	42.93 ± .22
						14 . 92 ± .18	$15.00 \pm .18$	$15.15 \pm .15$	14 . 83 ± .25	14.93 ± .20	14.92 ± .16			√ 4	2 . 35 ± .30	42 . 34 ± .31	42 . 04 ± .20	42 . 92 ± .33	42 . 72 ± .25	42 . 54 ± .29
						14.97 <u>+</u> .17	14 . 83 ± .23	14 . 78 ± .17	$15.22 \pm .16$	14.79 ± .26	14 . 85 ± .26				42.97 ± .29	42.77 ± .36	$42.36 \pm .18$	$43.31 \pm .34$	$42.85 \pm .18$	$42.60 \pm .36$
							_		-							-				
						Te	esting	Error a	ind Lo	ss Cur	ves on	S	VH	HN	(left)	and C		00 (rig	(ht)	
ы.	1.10	19-10													• •					
78		C		0.09 r		The SVHN	Dataset		The S	SVHN Datas	set		0.71	Th	ne CIFAR1	00 Dataset			FAR100 Dat	aset
			ate		R R		et, testing error	ale)		→-LeNet, testino	g loss	ate	0.00			t, testing error	ale)		→LeNet, testing	
			ц Ц	0.08	N N		Pivet, testing er					r Ra	0.66 - · ·		Q GNPF	-Net, testing er				sung loss
														<u>~</u>						
		100 March 100 Ma	luo	0.06	í l	A SWA	₩ b	<u>u</u> 0.22		<u>ଚ</u> ଚନ୍ଦ୍ର		ion	0.56		The series	Mana		1		
			aniti	0.05		W BLEVALAN	Alonaomore	0 U D 0.19	<u><u></u>, p e a</u>	ॼॿ॒॒ॿॿ	0-0-0-0-0	gniti	0.51					9		
								L				О́ О́ 0.46					7			
1	M .	Constant Provide State	£	0.03				Č 0.13		C-B-1	9 0 0 0 0	Ŷ	0.41				Ľ Ľ	5		

hrase Pooling:	
currence of Neurons	/ic
gdong Wang ⁴ and Alan Yuille ¹	1 法
University of Texas at San Antonio	
⁴ Microsoft Research	

Geometric Neural Phrase Pooling: Smoothing Effect

GNPP penalizes isolated neural responses, and preserves the clustered responses. In neural networks, especially in high-level layers, the isolated responses often relate to random noise, therefore GNPP works well in these layers.

L), SVHN (UR), CIFAR10 (LL) and CIFAR100 (LR)

RESULTS

Results on some *small* datasets

We use BigNet [49] and Wide ResNet [50] as baselines. GNPP is inserted before the last pooling layer of each network.

	MNIST	SVHN	CIF10	CIF100
Zeiler [42]	0.45	—	2.80	_
Goodfellow [5]	0.47	_	2.47	
Lin [21]	0.47		2.35	
Wan [38]	0.52	0.21		1.94
Lee [21]	0.39	_	1.92	_
Liang [20]	0.31	_	1.77	
BigNet , without GNPP	0.86	0.48	3.93	3.48
BigNet , with GNPP	0.68	0.43	3.65	3.25
WRN, without GNPP	0.66	0.45	3.69	3.27
WRN, with GNPP	0.63	0.41	3.61	3.21

Results on ImageNet

We use AlexNet [2] as our baseline. GNPP is inserted before the last nooling laver

AlexNet, w/ GNPP	42.16	19.24				
AlexNet, w/o GNPP	43.19	19.87				
ILSVRC2012	top-1	top-5				
before the last pooling layer						

• GNPP builds latent neural connections. With GNPP, the equivalent # of connections between conv-4 and conv-5 increases from 149.5M to 348.9M. An alternative way is to increase the # of convolutional kernels, *e.g.*, using 512 kernels at conv-5 increases the number to 299.0M ILSVRC2012 Time Memory top-1 top-5 42.45 19.47 +9.97% +5.58% AlexNet, w/ more kernels

42.16 19.24 +1.29% +2.52% AlexNet, w/ GNPP **GNPP** is more effective and more efficient.

REFERENCES

Key references are numbered as they appear in the paper. [1] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-scale Hierarchical Image Database. CVPR,

[2] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NIPS,

[26] L. Xie, Q. Tian, M. Wang and B. Zhang. Spatial Pooling of Heterogeneous Features for Image Classification. TIP, 2014. [49] Nagadomi. The Kaggle CIFAR10 Network.

https://github.com/nagadomi/kaggle-cifar10-torch7/. 2014. [50] S. Zagoruyko, N. Komodakis. Wide Residual Networks. arXiv preprint, arXiv: 1605.07146, 2016.

ACKNOWLEDGEMENTS

This paper is supported by iARPA MICrONS contract D16PC00007, ONR N00014-12-1-0883, ARO grants W911NF-15-1-0290, Faculty Research Gift Awards by NEC Labs of America and Blippar, and NSFC 61429201. We thank Junhua Mao, Cihang Xie and Zhuotun Zhu for discussion.