ABSTRACT

An increasing number of computer vision tasks can be tackled with deep features, which are the intermediate outputs of a pre-trained Convolutional Neural Network. Despite the astonishing performance, deep features extracted from low-level neurons are still below satisfaction, arguably because they cannot access the spatial content contained in the higher layers. In this paper, we present InterActive, a novel algorithm which computes the activeness of the neurons at each level, and extracts information from the last layer. Activeness is propagated through a neural network in a top-down manner, carrying high-level context and improving the descriptive power of low-level mid-level neurons. Visualization indicates that neuron activeness can be interpreted as spatial-weighted neuron responses. We achieve state-of-the-art classification performance on a wide range of image datasets.

THE PROPOSED ALGORITHM

Improved deep feature extraction

Input: an image with $W \times H$ pixels.

Reference model: a pre-trained VGGNet.

Original deep feature extraction: resizing the image into 224×224, passing it through the network, and extracting the intermediate response on the t-th layer.

Improved deep feature extraction: resizing the input to 64×64:

- The aspect ratio is maximally preserved;
- The area (number of pixels) is 512^2;
- The width and height are multipliers of 32 (the down-sampling rate of VGGNet) passing the resized image through the network, extracting the intermediate response on the t-th layer, and averaging over all the spatial positions.

Significant accuracy gain

Main reason: conventional deep feature extraction only involves forward-propagation, useful information in high-level layers is discarded.

Solution: introducing a back-propagation process into deep feature extraction!

Inter-layer activeness propagation

Key idea: unsupervised back-propagation in the deep feature extraction process.

- Defining a score function at the top level;
- Back-propagating gradients to obtain the activeness of neuron connections;
- Collecting the activeness of neuron connections as the activeness of neurons.

A pre-trained CNN: $h(x^{(0)'}, \theta)$, $x^{(0)}$ is the input, and θ is the weights. $x^{(0)}$ is the neuron responses on the t-th layer, a $W_t \times H_t \times D_t$ cube. $x^{(0)}$ (D_t-dimensional) is the average over all spatial positions of $x^{(0)}$.

Feature distribution on the top layer

We study the PDF of neuron responses on the 7-th layer, i.e., the starting point of backprop.

We assume the following PDF:

$$f(x^{(0)}) = C_p \times \exp\left[-\frac{1}{2}(x^{(0)} - \mu)^2\right],$$

where p is the norm (1 or 2) and C_p is the normalization coefficient.

Score function and activeness of connections

The activeness of neuron connection is computed using the score function, i.e., the gradient of log-distribution over $\theta^{(0)}$, $\alpha^{(0)} = \frac{\partial \log f(x^{(0)})}{\partial \theta^{(0)}}$, $\alpha^{(0)}$ is the layer score, and $\frac{\partial \log f(x^{(0)})}{\partial \theta^{(0)}}$ is the inter-layer activeness.

Main problem:

We use InterActive to update the fc-6 neurons.

Results

- **ImageNet**
 - Top 1: 26.3% vs 25.4% (8%)
 - Top 5: 57.5% vs 55.4% (2%)

REFERENCES

ACKNOWLEDGEMENTS

This work was partly done when Lingxi Xie and Liang Zheng were interns at MSR. They contributed equally. This work was supported by NSF Grant 1536102 and ARO grant W111NF15-1-0290, Faculty Research Gift Awards by NEC Labs of America and Blippar, and NSF CS4242001. We thank John Flynn, Xiao Dong, Jianyu Wang, Jianhua Ma and Zhoutao Zhu for instructive discussions.