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Abstract

Training a robotic arm to accomplish real-world tasks

has been attracting increasing attention in both academia

and industry. This work discusses the role of computer vi-

sion algorithms in this field. We focus on low-cost arms on

which no sensors are equipped and thus all decisions are

made upon visual recognition, e.g., real-time 3D pose es-

timation. This requires annotating a lot of training data,

which is not only time-consuming but also laborious.

In this paper, we present an alternative solution, which

uses a 3D model to create a large number of synthetic data,

trains a vision model in this virtual domain, and applies it

to real-world images after domain adaptation. To this end,

we design a semi-supervised approach, which fully lever-

ages the geometric constraints among keypoints. We apply

an iterative algorithm for optimization. Without any anno-

tations on real images, our algorithm generalizes well and

produces satisfying results on 3D pose estimation, which is

evaluated on two real-world datasets. We also construct

a vision-based control system for task accomplishment, for

which we train a reinforcement learning agent in a virtual

environment and apply it to the real-world. Moreover, our

approach, with merely a 3D model being required, has the

potential to generalize to other types of multi-rigid-body dy-

namic systems.

1. Introduction

Precise and agile robotic arms have been widely used

in the assembly industry for decades, but the adaptation

of robots to domestic use is still a challenging topic. This

task can be made much easier if vision input are provided

and well utilized by the robots. A typical example lies

in autonomous driving [8]. In the area of robotics, re-

searchers have paid more and more attentions to vision-

based robots and collected large-scale datasets, e.g., for ob-

ject grasping [19][29] and block stacking [12]. However,

∗This work was done when the first author was an intern at the Johns

Hopkins University. The first two authors contributed equally.

the high cost of configuring a robotic system largely limits

researchers from accessing these interesting topics.

This work aims at equipping a robotic system with com-

puter vision algorithms, e.g., predicting its real-time status

using an external camera, so that researchers can control

them with a high flexibility, e.g., mimicking the behavior of

human operators. In particular, we build our platform upon

a low-cost robotic arm named OWI-535 which can be pur-

chased from Amazon1 for less than $40. The downside is

that this arm has no sensors and thus it totally relies on vi-

sion inputs2 – on the other hand, we can expect vision inputs

to provide complementary information in sensor-equipped

robotic systems. We chose this arm for two reasons. (i)

Accessibility: the cheap price reduces experimental bud-

gets and makes our results easy to be reproduced by lab re-

searchers (poor vision people :( ). (ii) Popularity: users

around the world uploaded videos to YouTube recording

how this arm was manually controlled to complete vari-

ous tasks, e.g., picking up tools, stacking up dices, etc.

These videos were captured under substantial environmen-

tal changes including viewpoint, lighting condition, occlu-

sion and blur. This raises real-world challenges which are

very different from research done in a lab environment.

Hence, the major technical challenge is to train a vision

algorithm to estimate the 3D pose of the robotic arm.

Mathematically, given an input image x, a vision model

M : p = h(x;θ) is used to predict p, the real-time 3D

pose of the arm, where θ denotes the learnable parameters,

e.g., in the context of deep learning [17], network weights.

Training such a vision model often requires a considerable

amount of labeled data. One option is to collect a large

number of images under different environments and anno-

tate them using crowd-sourcing, but we note a significant

limitation as these efforts, which take hundreds of hours, are

often not transferable from one robotic system to another.

In this paper, we suggest an alternative solution which bor-

1https://www.amazon.com/dp/B0017OFRCY/
2Even when the initialized status of the arm is provided and each action

is recorded, we cannot accurately compute its real-time status because each

order is executed with large variation – even the battery level can affect.
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Figure 1. An overview of our system (best viewed in color). The goal is to accomplish tasks using camera as the only sensor. The vision

module detects 2D keypoints of the arm and then computes its 3D pose. The control module uses the 3D pose estimation to determine the

next move and feeds it to the motors. In our setup, scene understanding is achieved by directly providing the 3D location of targets.

rows a 3D model and synthesizes an arbitrary amount of

labeled data in the virtual world with almost no cost, and

later adapts the vision model trained on these virtual data to

real-world scenarios.

This falls into the research area of domain adaptation [4].

Specifically, the goal is to train M on a virtual distribution

xV ∼ PV and then generalize it to the real distribution

xR ∼ PR. We achieve this goal by making full use of a

strong property, that the spatial relationship between key-

points, e.g., the length of each bone, is fixed and known.

This is to say, although the target distribution PR is differ-

ent from PV and data in PR remain unlabeled, the predicted

keypoints should strictly obey some geometric constraints

τ . To formulate this, we decompose M into two compo-

nents, namely M1 : y = f(x;θ) for keypoint detection and

M2 : p = g(y; τ ) for 3D pose estimation, respectively.

Here, M2 is parameter-free and thus cannot be optimized,

so we train M1 on PV and hope to adapt it to PR, and y be-

comes a hidden variable. We apply an iterative algorithm to

infer p⋆ = argmaxp
∫

Pr(y;θ | x) · Pr(p; τ | y) dy, and

the optimal y⋆ determined by p⋆ serves as the guessed la-

bel, which is used to fine-tune M1. Eventually, prediction is

achieved without any annotations in the target domain.

We design two benchmarks to evaluate our system. The

first one measures pose estimation accuracy, for which we

manually annotate two image datasets captured in our lab

and crawled from YouTube, respectively. Our algorithm,

trained on labeled virtual data and fine-tuned with unlabeled

lab data, achieves a mean angular error of 4.81◦, averaged

over 4 joints. This lays the foundation of the second bench-

mark in which we create an environment for the arm to ac-

complish a real-world task, e.g., touching a specified point.

Both quantitative (in distance error and success rates) and

qualitative (demos are provided in the supplementary ma-

terial) results are reported. Equipped with reinforcement

learning, our vision-based algorithm achieves comparable

accuracy with human operators. All our data and code have

been released at our website, https://craves.ai.

In summary, the contribution of this paper is three-fold.

First, we design a complete framework to achieve satisfying

accuracy in task accomplishment with a low-cost, sensor-

free robotic arm. Second, we propose a vision algorithm

involving training in virtual environment and domain adap-

tation, and verify its effectiveness in a typical multi-rigid-

body system. Third, we develop a platform with two real-

world datasets and a virtual environment so as to facilitate

future research in this field.

2. Related Work

• Vision-based Robotic Control

Vision-based robotic control is attracting more and more

attentions. Compared with conventional system relying

on specific sensors, e.g. IMU and rotary encoder, vision

has the flexibility to adapt to complex and novel tasks.

Recent progress of computer vision makes vision-based

robotic control more feasible. Besides using vision algo-

rithms as a perception module, researchers are also ex-

ploring training an end-to-end control system purely from

vision [13][18][23]. To this end, researchers collected

large datasets for various tasks, including grasping [19][29],

block stacking [12], autonomous driving [8][43], etc.

On the other hand, training a system for real-world con-
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Figure 2. Here shows the 4 joints and 17 keypoints of OWI-535

used in our experiment. Each joint is assigned a specific name.

Color of keypoint correspond to the part to which it belongs.

trol tasks is always time-consuming, and high-accuracy

sensor-based robots are expensive , both of which have pre-

vented a lot of vision researchers from entering this re-

search field. For the first issue, people turned to use sim-

ulators such as MuJoCo [37] and Gazebo [16] so as to ac-

celerate training processes, e.g., with reinforcement learn-

ing, and applied to real robots, e.g., PR2 [39], Jaco [32]

and KUKA IIWA [2](ranging from $50, 000 to $200, 000).

For the second issue, although low-cost objects (e.g., toy

cars [15]) have been used to simulate real-world scenarios,

low-cost robotic arms were rarely used, mainly due to the

limitation caused by the imprecise motors and/or sensors,

so that conventional control algorithms are difficult to be

applied. For instance, Lynxmotion Arm is an inexpensive

($300) robotic arm used for training reinforcement learn-

ing algorithms [31][5]. The control of this arm was done

using a hybrid of camera and servo-motor, which provides

joint angle. This paper uses an even cheaper ($40) and more

popular robotic arm named OWI-535, which merely relies

on vision inputs from an external camera. To the best of our

knowledge, this arm has never been used for automatic task

accomplishment, because lacking of sensors.

• Computer Vision with Synthetic Data

Synthetic data have been widely applied to many com-

puter vision problems in which annotations are diffi-

cult to obtain, such as optical flow [3], object track-

ing [6][24][44], human parsing [41], VQA [14], 6-D pose

estimation [34][35], semantic segmentation [10], etc.

Domain adaptation is an important stage to transfer

models trained on synthetic data to real scenarios. There

are three major approaches, namely, domain randomiza-

tion [36][38], adversarial training [9][25][33][40] and joint

supervision [20]. A more comprehensive survey on domain

adaptation is available in [4]. As an alternative solution,

researchers introduced intermediate representation (e.g., se-

mantic segmentation) to bridge the domain gap [11]. In this

work, we focus on semi-supervised learning with the as-

sistance of domain randomization. The former method is

mainly based on 3D priors obtained from modeling the ge-

ometry of the target object [7][28]. Previously, researchers

applied parameterized 3D models to refine the parsing re-

sults of humans [1][27] or animals [47], or fine-tune the

model itself [28]. The geometry of a robotic system often

has a lower degree of freedom, which enables strong shape

constraints to be used for both purposes, i.e., prediction re-

finement and model fine-tuning.

3. Approach

3.1. System Overview

We aim at designing a vision-based system to control a

sensor-free robotic arm to accomplish real-world tasks. Our

system, as illustrated in Figure 1, consists of three major

components working in a loop. The first component, data

acquisition, samples synthetic images x from a virtual envi-

ronment for training and real images from an external cam-

era for real-time control. The second component is pose

estimation, an algorithm p = h(x;θ) which produces the

3D pose (joint angles) of the robotic arm (see Figure 2 for

the definition of four joints). The third component is a con-

troller, which takes p as input, determines an action for the

robotic arm to take, and therefore triggers a new loop.

Note that data acquisition (Section 3.2) may happen in

both virtual and real environments – our idea is to collect

cheap training data in the virtual domain, train a vision

model and tune it into one that works well in real world. The

core of this paper is pose estimation (Section 3.3), which is

itself an important problem in computer vision, and we in-

vestigate it from the perspective of domain transfer. While

studying motion control (Section 3.4) is also interesting yet

challenging, it goes out of the scope of this paper, so we

setup a relatively simple environment and apply an rein-

forcement learning algorithm.

3.2. Data Acquisition

The OWI-535 robotic arm has 5 motors named rotation,

base, elbow, wrist and gripper. Among them, the status of

the gripper is not necessary for motion planing and thus it

is simply ignored in this paper. The range of motion for the

first 4 motors are 270◦, 180◦, 300◦ and 120◦, respectively.

In order to collect training data with low costs, we turn

to the virtual world. We download a CAD model of the arm

with exactly the same appearance as the real one which was

constructed using Unreal Engine 4 (UE4)3. Using Maya,

we implement its motion system which was not equipped

in the original model. The angle limitation as well as the

collision boundary of each joint is also manually config-

ured. The CAD model of OWI-535 has 170,648 vertices in

total, among which, we manually annotate 17 visually dis-

tinguishable vertices as our keypoints, as shown in Figure 2.

3https://3dwarehouse.sketchup.com/model/u21290a3e-f8ef-
46da-985c-9aa56b0dee53/Maplin-OWI-ROBOTIC-ARM
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This number is larger than the degree-of-freedom of the sys-

tem (6 camera parameters and 4 joint angles), meanwhile

reasonably small so that all keypoints can be annotated on

real images for evaluation. The images and annotations are

collected from UE4 via UnrealCV [30].

We create real-world dataset from two sources for bench-

mark and replication purpose. The first part of data are

collected from an arm in our own lab, and we maximally

guarantee the variability in its pose, viewpoint and back-

ground. The second part of data are crawled from YouTube,

on which many users uploaded videos of playing with this

arm. Both subsets raise new challenges which are not cov-

ered by virtual data, such as motion blur and occlusion, to

our vision algorithm, with the second subset being more

challenging as the camera intrinsic parameters are unknown

and the arm may be modded for various purposes. We man-

ually annotate the 17 keypoints on these images, which typ-

ically takes one minute for a single frame.

More details of these datasets are covered in Section 4.

3.3. Transferable 3D Pose Estimation

We first define some terminologies used in this paper.

Let p define all parameters that determine the arm’s position

in the image. In our implementation, p has 10 dimensions:

6 camera extrinsic parameters (location, rotation) and 4 an-

gles of motors. y ∈ R
17×2 and z ∈ R

17×3 are the locations

of keypoints in 2D and 3D, respectively. Both y and z are

deterministic functions of p.

The goal is to design a function p = h(x;θ) which re-

ceives an image x and outputs the pose vector p which de-

fines the pose of the object. θ denotes the learnable param-

eters, e.g., network weights in the context of deep learning.

The keypoints follow the same geometry constraints in both

virtual and real domains. In order to fully utilize these con-

straints, we decompose h(·) into two components, namely,

2D keypoint detection M1 : y = f(x;θ) and 3D pose es-

timation M2 : (p, z) = g(y; τ ). Here, τ is a fixed set of

equations corresponding to the geometric constraints, e.g.,

the length between two joints. This is to say, M1 is trained

to optimize θ while M2 is a parameter-free algorithm which

involves fitting a few fixed arithmetic equations.

To alleviate the expense of data annotation, we apply a

setting known as semi-supervised learning [46] which con-

tains two parts of training data. First, a labeled set of train-

ing data D1 = {(xn,yn)}
N

n=1 is collected from the virtual

environment. This process is performed automatically with

little cost, and also easily transplanted to other robotic sys-

tems with a 3D model available. Second, an unlabeled set

of image data D2 = {x̃m}
M

m=1 is provided, while the corre-

sponding label ỹm for each x̃m remains unknown. We use

PV and PR to denote the virtual and real image distribu-

tions, i.e., xn ∼ PV and x̃m ∼ PR, respectively. Since PV

and PR can be different in many aspects, we cannot expect

a model trained on D1 to generalize sufficiently well on D2.

The key is to bridge the gap between PV and PR. One

existing solution works in an explicit manner, which trains a

mapping r(·), so that when we sample x̃m from PR, r(x̃m)
maximally mimics the distribution of PV. This is achieved

by unpaired image-to-image translation [45], which was

verified effective in some vision tasks [9]. However, in

our problem, an additional cue emerges, claiming that the

source and target images have the same label distribution,

i.e., both scenarios aim at estimating the pose of exactly the

same object, so we can make use of this cue to achieve do-

main adaptation in an implicit manner. In practice, we do

semi-supervised training by providing the system with un-

labeled data. Our approach exhibits superior transfer ability

in this specific task, while we preserve the possibility of

combining both manners towards higher accuracy.

To this end, we reformulate M1 and M2 in a probabilistic

style. M1 produces a distribution F(x;θ) ∋ y, and simi-

larly, M2 outputs G(y; τ ) ∋ (p, z). Here, the goal is to

maximize the marginal likelihood of (p, z) while y remains

a latent variable:

(p⋆, z⋆) = argmax
(p,z)

∫

Pr(y;θ | x) · Pr(p, z; τ | y) dy.

(1)

There is another option, which directly computes y⋆ =
argmaxy Pr(y;θ | x) and then infers p⋆ and z⋆ from y⋆.

We do not take it because we trust Pr(p, z; τ | y) more than

Pr(y;θ | x), since the former is formulated by strict geo-

metric constraints. Eqn (1) can be solved using an iterative

algorithm, starting with a model F(x;θ) pre-trained in the

virtual dataset.

In the first step, we fix θ and infer F(x;θ). This is done

by cropping the input image to 256×256 and feeding it to a

stacked hourglass network [26] with 2 stacks. The network

produces K = 17 heatmaps, each of which, sized 64× 64,

corresponds to a keypoint. These heatmaps are taken as

input data of G(y; τ ) which estimates p and z as well as

y. This is done by making use of geometric constraints

τ , which appears as a few linear equations with fixed pa-

rameters, e.g., the length of each bone of the arm. This is a

probabilistic model and we apply an iterative algorithm (see

Section 3.5) to find an approximate solution y′, p′ and z′.

Note that y′ is not necessarily the maximum in F(x;θ).
In the second step, we take the optimal y′ to update θ.

As F(x;θ) is a deep network, this is often achieved by gra-

dient back-propagation. We incorporate this iterative algo-

rithm with stochastic gradient descent. In each basic unit

known as an epoch, each step is executed only once. Al-

though convergence is most often not achieved, we con-

tinue with the next epoch, which brings more informative

supervision. Compared with solving Eqn (1) directly, this

strategy improves the efficiency in the training stage, i.e., a

smaller number of iterations is required. Figure 3 shows an
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Figure 3. The pipeline of transferable 3D pose estimation (best
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(green) and inaccurate (cyan) keypoints, and even outliers (red).

By introducing a 3D-prior constraint, we obtain a refined keypoint

prediction, which is used to fine-tune the neural network.

illustration of our transferable pose estimation pipeline.

3.4. Motion Control

In order to control the arm to complete tasks, we need a

motion control module which takes the estimated 3D pose

as input and outputs an action to achieve the goal. The mo-

tion control policy at = π(st, gt) is learned via a deep re-

inforcement learning algorithm. st is the state about the

environment at time t, e.g. the arm pose p. gt represents

the goal, e.g. target location. at is the control signal for

each joint in our system. The policy is learned in our virtual

environment, and optimized by Deep Deterministic Policy

Gradient (DDPG) [21]. Our experiment shows that using

arm pose as input, the policy learned in the virtual environ-

ment can be directly applied to the real world.

3.5. Implementation Details

• Training Data Variability

Our approach involves two parts of training data, namely,

a virtual subset to pre-train 2D keypoint detection, and an

unlabeled real subset for fine-tuning. In both parts, we

change the background contents of each training image so

as to facilitate data variability and thus alleviate over-fitting.

In the virtual domain, background can be freely con-

trolled by the graphical renderer. In this scenario, we place

the arm on a board, under a sky sphere, and the background

of the board and the sphere are both randomly sampled from

the MS-COCO dataset [22]. In the real domain, however,

background parsing is non-trivial yet can be inaccurate. To

prevent this difficulty, we create a special subset for fine-

tuning, in which all images are captured in a clean envi-

ronment, e.g., in front of a white board, which makes it

easy to segment the arm with a pixel-wise color-based filter,

and then place it onto a random image from the MS-COCO

dataset. We observe consistent accuracy gain brought by

these simple techniques.

• Joint Keypoint Detection and Pose Estimation

We use an approximate algorithm to find the y′ (as well

as p′ and z′) that maximizes Pr(y;θ | x) · Pr(p, z; τ | y)
in Eqn (1), because an accurate optimization is mathemati-

cally intractable. We first compute y′ = argmaxy F(x;θ)
which maximizes Pr(y;θ | x). This is performed on the

heatmap of each 2D keypoint individually, which produces

not only the most probable y′

k but also a score ck indicating

its confidence. We first filter out all keypoints with a thresh-

old ξ, i.e., all keypoints with ck < ξ are considered un-

known (and thus completely determined by geometric prior)

in the following 3D reconstruction module. This is to max-

imally prevent the impact of outliers. In practice, we use

ξ = 0.3 and our algorithm is not sensitive to this parameter.

Next, we recover the 3D pose using these 2D keypoints,

i.e., maximizing Pr(p, z; τ | y = y′). Under the assump-

tion of perspective projection, that each keypoint yk ∈ R
2

is the 2D projection of a 3D coordinate zk ∈ R
3, which can

be written in a linear equation:

[y|1]
⊤
· Ŝ = K · [R|T] · [z|1]

⊤
. (2)

Here, y ∈ R
K×2 and z ∈ R

K×3 are 2D and 3D coordi-

nate matrices, respectively, and 1 ∈ R
K×1 is an all-one

vector. K ∈ R
3×3 is the camera intrinsic matrix, which is

constant for a specific camera. S ∈ R
K , R ∈ R

3×3 and

T ∈ R
3×1 denote the scaling vector, rotation matrix and

translation vector, respectively, all of which are determined

by p. For each keypoint k, zk is determined by the mo-

tor transformation zk = zk0 ·Wk, where z0 ∈ R
K×3 is a

constant matrix indicating the coordinates of all keypoints

when motor angles are 0, and Wk ∈ R
3×3 is the motor

transformation matrix for the kth keypoint, which is also

determined by p. Ŝ = diag(S) is the scaling matrix. Due

to the inaccuracy in prediction (y can be inaccurate in ei-

ther prediction or manual annotation) and formulation (e.g.,

perspective projection does not model camera distortion),

Eqn (2) may not hold perfectly. In practice, we assume the

recovered 3D coordinates to follow an isotropic Gaussian

distribution, and so maximizing its likelihood gives the fol-

lowing log-likelihood loss:

L(p, z | y) =
∥

∥

∥
[y|1]

⊤
· Ŝ−K · [R|T] · [z|1]

⊤

∥

∥

∥

2

2
. (3)

4. Experiments

4.1. Dataset and Settings

We generated 5,000 synthetic images with randomized

camera parameters, lighting conditions, arm poses and

background augmentation (see Section 3.5). Among them,

4,500 are used for training and the remaining 500 for vali-

dation. This dataset, later referred to as the virtual dataset,

is used to verify the 2D keypoint detection model, e.g., a

stacked hourglass network, works well.

54218



Figure 4. Example images of three datasets used in this paper.

From top to bottom: synthetic images (top two rows), lab images

and YouTube images. Please zoom in to see details.

In the real environments, we collected and manually an-

notated two sets of data. The first one is named the lab

dataset, which contains more than 20,000 frames captured

by a 720P Webcam. We manually chose 428 key frames

and annotated them. For this purpose, we rendered the 3D

model of the arm in the virtual environment and adjusted it

to the same pose of the real arm so that arms in these two

images exactly overlap with each other – in this way we

obtained the ground-truth arm pose, as well as the camera

intrinsic and extrinsic (obtained by a checkerboard placed

alongside the robotic arm at the beginning of each video)

parameters. We deliberately put distractors, e.g. colorful

boxes, dices and balls, to make the dataset more difficult

and thus evaluate the generalization ability of our models.

The frames used for fine-tuning and for testing come from

different videos.

The second part of real-world image data, the YouTube

dataset, is crawled from YouTube, which contains 109
videos with the OWI-535 arm. This is a largely diversified

collection, in which the arm may even be modded, i.e., the

geometric constraints may not hold perfectly. We sampled

275 frames and manually annotated the visibility as well

as position for each 2D keypoint. Note that, without cam-

era parameters, we cannot annotate the accurate pose of the

arm. This dataset is never included in training, but used to

observe the behavior of domain adaptation.

Sample images of three datasets are shown in Figure 4.

4.2. Pose Estimation

4.2.1 Detecting 2D Keypoints

We first evaluate 2D keypoint detection, and make use of a

popular metric named PCK@0.2 [42] to evaluate the accu-

racy. For this purpose, we train a 2-stack hourglass network

from scratch for 30 epochs in the virtual dataset. Stan-

dard data augmentation techniques are applied, including

random translation, rotation, scaling, color shifting and flip-

Model Virtual Lab YouTube YouTube-vis

Synthetic 99.95 95.66 80.05 81.61

CycleGAN 99.86 97.84 75.26 76.98

ADDA 99.89 96.14 79.19 80.04

CyCADA 99.84 98.09 73.47 74.37

Our Method 99.63 99.55 87.01 88.89
Table 1. 2D keypoint detection accuracy (PCK@0.2, %) on three

datasets. Models are tested on YouTube dataset when considering

all keypoints and considering only the visible ones.

ping. On top of this model, we consider several approaches

to achieve domain transfer. One is to train an explicit model

which transfers virtual data to fake real data on which we

train a new model. In practice, we apply a popular genera-

tive model named CycleGAN [45]. We trained the Cycle-

GAN network with synthetic image as the source domain

and lab image as the target domain for 100 epochs. Other

domain adaptation methods, i.e., ADDA [40] and its follow-

up work CyCADA [9] are also applied and compared with

our approach described in Section 3.3. We mix the syn-

thetic and real images with a ratio of 6 : 4 and use the same

hyper-parameters as for the baseline. Background clutters

are added to the lab images in an online manner to facilitate

variability (see Section 3.5).

Results are summarized in Table 1. The baseline model

works almost perfectly on virtual data, which reports a

PCK@0.2 accuracy of 99.95%. However, this number

drops significantly to 95.66% in lab data, and even dramat-

ically to 80.05% in YouTube data, demonstrating the exis-

tence of domain gaps. These gaps are largely shrunk after

domain adaptation algorithms are applied. Training with

images generated by CycleGAN, we found that the model

works better in its target domain, i.e. the lab dataset by

a margin of 2.18%. However, this model failed to gen-

eralize to YouTube dataset, as the accuracy is even lower

than the baseline model. The cases are similar for ADDA

and CyCADA, which gains 0.48% and 2.43% improvement

on the lab dataset respectively, but both of the approaches

do not generalize well to the YouTube dataset. Our ap-

proach, on the other hand, achieves much higher accuracy,

with a PCK@0.2 score of 99.55% in the lab data, and

87.01% in the YouTube, boosting the baseline performance

by 6.96%. In the subset of visible YouTube keypoints, the

improvement is even higher (7.28%). In addition, the re-

fined model only produces a slightly worse PCK@0.2 ac-

curacy (99.63% vs. 99.95%) on virtual data, implying that

balance is achieved between “fitting on virtual data” and

“transferring to real data”.

The results reveal that performance of explicit domain

adaptation manners, i.e. CycleGAN, ADDA and CyCADA

can be limited in several aspect. For instance, compared

with our 3D geometric based domain adaptation method, al-

though the models trained with these explicit domain adap-
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Model
Motor Camera

Rotation Base Elbow Wrist Average Rotation Location

Synthetic 7.41 6.20 7.15 7.74 7.13 6.29 7.58

Refined 4.40 3.29 5.35 6.03 4.81 5.29 6.73

Table 2. 3D pose estimation errors (degrees) and camera parameter

prediction errors (degrees and centimeters) in the lab dataset.

Figure 5. Qualitative results from our YouTube dataset. The chal-

lenges include occlusion, user modification, lighting, etc. We

show synthetic images generated using the camera parameters and

pose estimated from the single input image. Both success cases

(left five columns) and failure cases (rightmost column) are shown.

tation methods fit to the target domain, it has a poor per-

formance on unseen data. Moreover, we fail to train a Cy-

cleGAN model with YouTube dataset as the target domain,

because the distribution of data in YouTube is too diverse

and such transformation is hard to learn.

4.2.2 Estimating the 3D Pose

We first test the performance of 3D pose estimation on the

virtual dataset. We use the model trained only on synthetic

images since it has the best 2D prediction accuracy on syn-

thetic data. The experiment was conducted on 500 synthetic

images. The angular error for four joints are 2.67◦, 2.80◦,

2.76◦, 3.31◦, with an average of 2.89◦. The error of camera

parameters is 2.25◦ for rotation and 2.59cm for location.

We also test the 3D pose estimation performance of our

model on real images, which is the basis for completing

tasks. The quantitative 3D pose estimation result is only re-

ported for the lab dataset, since getting 3D annotation for

YouTube data is difficult. We estimate the camera intrinsic

parameters by using camera calibration with checkerboard.

Results are shown in Table 2. The results reveal that our re-

fined model outperforms the synthetic only model by 2.32◦

on average angular error. The qualitative result on YouTube

dataset are shown in Figure 5. Since the camera intrinsic pa-

rameters are unknown for YouTube videos, we use the weak

perspective model during reconstruction. Heavy occlusion,

user modification and extreme lighting make the 3D pose

estimation hard in some cases. We select typical samples

for success and failure cases.

4.2.3 Ablation Study: Domain Adaptation Options

As described in Section 3.5, when training the refined

model, two strategies are applied on the real images: ran-

Model Lab YouTube YouTube-vis

Synthetic Only 95.66 80.05 81.61

BG ✗ 3D ✗ 94.52 80.24 82.22

BG ✓ 3D ✗ 98.72 84.04 87.11

BG ✗ 3D ✓ 97.31 86.52 88.27

BG ✓ 3D ✓ 99.55 87.01 88.89
Table 3. 2D keypoint detection accuracy (PCK@0.2, %) under ab-

lation study. ‘3D’ stands for joint keypoint detection and 3D pose

estimation, and ‘BG’ for random background augmentation.

# Images Lab YouTube YouTube-vis

2,500 92.38 75.24 77.33

5,000 95.66 80.05 81.61

10,000 96.13 80.71 81.71

20,000 97.25 81.11 81.83
Table 4. 2D keypoint detection accuracy (PCK@0.2, %) with re-

spect to the number of training images.

dom background augmentation and joint keypoint detection

and pose estimation. To evaluate the contribution of these

two strategies to the improvement on accuracy, we did an

ablation study. Results are shown in Table 3.

We compare the performance of 5 models: 1) baseline

model, trained on 4,500 synthetic images; 2) - 5) mod-

els trained with/without joint estimation and with/without

background augmentation. Note that if a model is trained

without joint estimation, we directly take the argmax on

the predicted heatmap as annotations for training. We see

that both strategies contribute to the overall performance

improvement. Our model performs best when combining

both strategies.

4.2.4 Ablation Study: Number of Training Images

With the help of domain randomization, we can generate an

unlimited number of synthetic images with high abundance

in their appearance. On the other hand, the performance

of deep models tends to saturate as the number of training

data increases. Therefore, it is necessary to balance between

performance and data-efficiency.

Results are shown in Table 4. As the number of training

images increases from 2,500 to 5,000, the accuracy signifi-

cantly increases (by 3.28% and 4.81% on lab and YouTube

dataset, respectively). When the number of training images

continue to increase to 20,000, the accuracy only increases

by a small margin (1.49% and 0.22% on lab and YouTube

dataset, respectively). Therefore, 5,000 synthetic images is

a nice balance between accuracy and efficiency.

4.3. Controlling the Arm with Vision

We implement a complete control system purely based

on vision, as described in Section 3.4. It takes a video

stream as input, estimates the arm pose, then plans the mo-

tion and sends control signal to the motors.
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Agent
Input Distance Success Average

Type Error (cm) Rate Time (s)

Human Direct 0.65 100.0% 29.8

Human Camera 2.67 66.7% 38.8

Ours Camera 2.66 59.3% 21.2
Table 5. Quantitative result for completing the reaching task. Our

system achieves comparable performance with human when the

same input signal is given.

This system is verified with a task, reaching a target

point. The goal is controlling the arm to make the arm tip

reach right above a specified point on the table without colli-

sion. Each attempt is considered successful if the horizontal

distance between arm tip and the target is within 3cm. The

system is tested at 6 different camera views. For each view,

the arm needs to reach 9 target points. The target points

and camera views are selected to cover a variety of cases.

We also place distractors to challenge our vision module. A

snapshot of our experiment setup can be seen in Figure 6.

We report human performance on the same task. Human

is asked to watch the video stream from a screen and control

the arm with a game pad. This setup ensures human and

our system accepts the same vision input in comparison. In

addition, we allow human to directly look at the arm and

move freely to observe the arm when doing the task. The

performance for both setups are reported.

Our control system can achieve comparable performance

with human in this task. The result is reported in Table 5.

Human can perform much better if directly looking at the

arm. This is because human can constantly move his head

to pick the best view for current state. Potentially, we could

use action vision, or multi-camera system, to mimic this

ability and further improve the system, which are interesting

future work but beyond the scope of this work. It is worth

noticing our system can run real-time and finish the task

faster than human.

Built on this control module, we show that our system

can move a stack of dices into a box separately. Please

see https://youtu.be/8hZjdqDrYas for video demonstra-

tion. To simplify deployment, we directly feed the ground-

truth locations of the dices and the box into the system and

apply the same controller as the reaching task. The success-

ful rate of this task is not high, because it requires highly

accurate pose control in both horizontal and vertical direc-

tions. We also provide some interesting failure cases in the

video. Failure cases are caused by several reasons, e.g., self

occlusion or rarely seen configurations. Also, the controller

sometimes fails, e.g., if the arm is too far from the camera,

a long-distance movement only causes minor visual differ-

ence. At the current point, this demo reveals the potential of

our vision-based control system, as well as advocates more

advanced vision algorithms to be designed to improve its

performance.

USB Camera

Reference Board

OWI-Arm

Background 

Objects

Figure 6. A snapshot of the real-world experiment setup. Loca-

tions of the goals are printed on the reference board and are used

as reference when measuring the error. We scatter background ob-

jects randomly during testing.

5. Conclusions

In this paper, we built a system, which is purely based on

vision inputs, to control a low-cost, sensor-free robotic arm

to accomplish tasks. We used a semi-supervised algorithm

which integrates labeled synthetic as well as unlabeled real

data to train the pose estimation module. Geometric con-

straints of multi-rigid-body system (the robotic arm in this

case) was utilized for domain adaptation. Our approach,

with merely a 3D model being required, has the potential to

be applied to other multi-rigid-body systems.

To facilitate reproducible research, we created a virtual

environment to generate synthetic data, and also collected

two real-world datasets from our lab and YouTube videos,

respectively, all of which can be used as benchmarks to

evaluate 2D keypoint detection and/or 3D pose estimation

algorithms. In addition, the low cost of our system en-

ables vision researchers to study robotic tasks, e.g., rein-

forcement learning, imitation learning, active vision, etc.,

without large economic expenses. This system also has the

potential to be used for high-school and college educational

purposes.

Beyond our work, many interesting future directions can

be explored. For example, we can train perception and con-

troller modules in a joint, end-to-end manner [18][13], or

incorporate other vision components, such as object detec-

tion and 6D pose estimation, to enhance the ability of the

arm so that more complex tasks can be accomplished.
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