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Heterogeneous Graph Propagation for
Large-Scale Web Image Search
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Abstract— State-of-the-art web image search frameworks are
often based on the bag-of-visual-words (BoVWs) model and the
inverted index structure. Despite the simplicity, efficiency, and
scalability, they often suffer from low precision and/or recall,
due to the limited stability of local features and the considerable
information loss on the quantization stage. To refine the quality
of retrieved images, various postprocessing methods have been
adopted after the initial search process. In this paper, we
investigate the online querying process from a graph-based
perspective. We introduce a heterogeneous graph model
containing both image and feature nodes explicitly, and propose
an efficient reranking approach consisting of two successive
modules, i.e., incremental query expansion and image-feature
voting, to improve the recall and precision, respectively.
Compared with the conventional reranking algorithms, our
method does not require using geometric information of visual
words, therefore enjoys low consumptions of both time and
memory. Moreover, our method is independent of the initial
search process, and could cooperate with many BoVW-based
image search pipelines, or adopted after other postprocessing
algorithms. We evaluate our approach on large-scale image
search tasks and verify its competitive search performance.

Index Terms— Large-scale web image search, postprocessing,
heterogeneous graph propagation, incremental query expansion,
image-feature voting.

I. INTRODUCTION

IMAGE search with its self-owning visual contents, known
as content based image retrieval (CBIR), has become a
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fundamental topic in the multimedia community and implies
a wide range of real-world applications. To search among a
large-scale image corpus, the Bag-of-Visual-Words (BoVW)
model with the inverted index structure [1] is widely adopted.
Conventional image search framework is often composed of
two major stages, i.e., offline indexing and online searching.
On the offline stage, local descriptors [2], [3] are extracted
on each image, quantized based on a large visual
vocabulary [4], [5], and organized with an inverted index.
On the online stage, local descriptors are also extracted on
the query image, quantized into visual words, and used to
access the corresponding entries in the inverted index. Finally,
the retrieved image candidates are aggregated as the search
results. The flowchart could also be applied to fine-grained
image search challenges [6].

Although the BoVW-based image search pipelines are
simple, efficient and scalable, they often suffers from low
precision and/or recall. The main reasons include the
unsatisfied repeatability of local descriptors and the loss of
information through the quantization process. In fact, accurate
matches between local features could be highly sensitive
especially in the cases of manual editing and geometric
deformation or stretching, meanwhile there also exist incorrect
feature matches between some totally irrelevant images. This
may cause some relevant images to be ranked after other
irrelevant candidates. Various post-processing techniques
are proposed to improve the quality of initial search results
using additional clues such as geometric location of local
features [7], extra features from the top-ranked images [8], and
affinity values propagated between images [9]. Most of these
proposed re-ranking approaches have been verified to improve
the precision and/or recall of image search to some extent.

In this paper, we inherit a graph-based perspective to
formulate the post-processing stage. For each query, we
partition retrieved images into four categories, i.e., true-
positive (highly ranked, relevant), false-negative (lowly
ranked, relevant), false-positive (highly ranked, irrelevant)
and true-negative (lowly ranked, irrelevant) sets, and reveal
that we can make full use of the relationship between (global)
images and (local) features to boost the search performance.
For this, we construct a heterogeneous graph containing two
types of nodes, i.e., images and features. Based on the graph
structure, we propose two efficient algorithms, i.e., Incremental
Query Expansion (IQE) and Image-Feature Voting (IFV),
to improve the recall and precision of initial search results,
respectively. The proposed image search framework is
illustrated in Figure 1. It is worth noting that the proposed
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Fig. 1. The general image search framework consisting of offline
indexing (left) and online querying (right) stages. The proposed IQE and
IFV algorithms are marked in red (best viewed in color PDF).

re-ranking algorithms are geometry-free, i.e., we do not need
to store and use geometric information such as location, scale
and orientation of local features, therefore both time and
memory costs on the online querying stage are significantly
reduced. Our algorithm also enjoys the advantage that being
independent of the initial search process. Therefore, one might
easily transplant the proposed modules onto many other image
search pipelines. It is also possible to apply our method after
other post-processing methods for even better results. We show
in experiments that our approach achieves competitive search
performance on a variety of image search tasks.

The remainder of this paper is organized as follows. We first
review the state-of-the-art image search pipeline in Section II.
Then Section III introduces the main algorithm, including
intuition (in Section III-A) and two modules (IQE in
Section III-B and IFV in Section III-C). After extensive
experiments are shown in Section IV, we draw the conclusion
in Section V.

II. THE IMAGE SEARCH PIPELINE

In this section, we give a brief overview of the image search
pipeline based on the Bag-of-Visual-Words (BoVW) model
and the inverted index structure.

A. Descriptor Extraction

We start from an image I = (
ai j

)
W×H , where ai j is the pixel

on position (i, j). To make a robust representation, handcrafted
descriptors are extracted on the regions-of-interest (ROI)
of images. For ROI detection, popular algorithms include
DoG [2], MSER [10], Hessian Affine [11] operators and dense
interest points [12]. For local patch description, SIFT [2], [13],
SURF [3], BRIEF [14], BRISK [15], FREAK [16] or
USB [17] descriptors could be used. Any combination of ROI
detection and patch description yields a set of local descriptors:

D = {(d1, l1) , (d2, l2) , . . . , (dM , lM )} (1)

where dm and lm denote the m-th description vector and
its geometric information (location, scale, orientation, etc.),
respectively. M is the total number of descriptors.

B. Quantization

After descriptors have been extracted, they are often
quantized to be compact. Generally, there are two ways of
compressing descriptors into visual words.

Fig. 2. Vector Quantization (result is a single ID of the nearest codeword in
the feature space) and Scalar Quantization (result is a binary vector obtained
by hard binarization). This figure is best viewed in color PDF.

The Vector Quantization (VQ) method requires training
a codebook with descriptors sampled beforehand. Since
the codebook size in image search is often quite large,
say, one million, the hierarchical [4] or approximate [5]
versions of K -Means are often adopted for acceleration. The
descriptors are then encoded by the nearest codeword using
hard quantization [4], or into a weighted combination of
several codewords with soft quantization [18].

As an alternative choice of feature quantization, the
Scalar Quantization (SQ) [19] method does not require
training an explicit codebook. A D-dimensional descriptor
dm = (

dm,1, dm,2, . . . , dm,D
)

can be transformed into a
D-dimensional bit vector (elements are either 0 or 1) directly
by simply setting a threshold, say, the median of descriptor
values, and binarizing according to the threshold. The descrip-
tors could also be encoded into longer bit vectors to preserve
richer information. In Scalar Quantization, similarity between
quantized features is formulated by Hamming distance. There
also exist other codebook-free quantization methods [20], [21].

Figure 2 illustrates a comparison between Vector
Quantization and Scalar Quantization. Denote the set of
quantized local features as F :

F = {(f1, l1) , (f2, l2) , . . . , (fM , lM )} (2)

Here, each feature fm is linked to a quantization unit
(codeword), therefore it is convenient to say that two descrip-
tors are matched, which means that they are quantized onto
the same codeword in the visual vocabulary.

C. Feature Indexing

Large-scale image search often requires finding features’
nearest or approximate nearest neighbors in a very short time,
therefore the inverted index [1], [5] is often adopted as an
efficient and scalable data structure for storing a large number
of images and features. In essence, the inverted index is a
compact linked list representation of a sparse matrix, in which
rows and columns denote features and images, respectively.
In the inverted index, each feature entry is followed by a list
of image IDs to record its occurrences. Some other clues, such
as geometric information of features, can also be stored for
verification. On the online retrieval stage, we need only to
check those images sharing common features with the query
image, and the number of enumerated candidate images is
greatly reduced.
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The ways of indexing visual words after Vector Quantization
and Scalar Quantization are also different. Vector Quantization
produces a single ID or a weighted group of IDs for
each descriptor, which could be used as the address of the
inverted index entry directly. In contrast, the output of Scalar
Quantization [19] is a D′-bit binary vector. We can take its
first t bits as the indexing address, access the entry by hashing,
and store the remaining D′ − t bits as well as image ID in the
indexed feature. Although the amount of possible codewords
is 2t , which could be as many as 4G when t = 32, the number
of appeared codewords, i.e., with non-empty indexed feature
lists, is much smaller, e.g., less than 80M in practise. It is
possible to allocate an entry for each of them.

D. Online Querying

Given a query image, local descriptors are also extracted,
quantized and used to look up the inverted index. The retrieved
image candidates are then ranked according to their frequen-
cies of occurrence. Sometimes, visual words are weighted for
better discrimination [22], [23].

In Scalar Quantization, a quite different online querying
process is performed. When a descriptor is quantized (without
training a codebook explicitly) into a D′-bit binary vector, we
take out its t first bits as the natural address to visit the inverted
file structure. In real practise, the search performance could be
significantly improved with a soft expansion, which allows to
visit all the addresses with at most d bits different with the
querying binary vector among first t bits, and to retrieve those
features in the index with at most κ different bits overall.
d and κ are named codeword expansion threshold and
Hamming threshold, respectively [19]. Given t and d , the
number of enumerated inverted lists is 1+d+ d(d−1)

2 +. . .+( t
d

)
.

Increasing d might result in a higher recall and, simultane-
ously, a more time-consuming querying process.

E. Post Processing

To improve search accuracy, initial search results are often
re-ranked using various post-processing modules. Among
these, query expansion [8], [24], [25] reissues initial top-
ranked results to find valuable features which are not present
in the original query; spatial verification [5], [26] filters
those false-positives by checking geometric consistency of
matched features, build efficient representation for false
match filtering [7], [27], or extracts visual phrases [28]
to verify matches on the more robust feature groups; and
diffusion-based algorithms [29], including those based on
graphs [9], [30]–[32] propagate affinities or beliefs via a
graph structure to capture the high-level connections
between images. Also there are other methods aimed at
selecting high-quality features [33], discovering feature
co-occurrence [34], [35], extracting contextual informa-
tion [36]–[38], incorporating nearest-neighbor informa-
tion [39], [40], adopting an alternative matching kernel [41],
combining different searching results [42], or dealing with
similarity between features [43]. Other recent proposed post-
processing methods include [44], [45]. All the approaches

Fig. 3. Example of a toy image graph with four types of nodes (best viewed
in color PDF). See the texts for detailed explanations.

have been verified to boost the precision or recall of search
results to some extent.

The major contribution of this paper lies on the post-
processing stage. Based on a graph-based perspective, we
propose two geometry-free algorithms to improve the precision
and recall of initial search results, respectively.

III. HETEROGENEOUS GRAPH PROPAGATION

In this section, we investigate the image search and
re-ranking problem from an alternative perspective. We build a
heterogeneous graph containing both image and feature nodes
explicitly, and propose two geometry-free post-processing
algorithms to improve precision and recall, respectively.

A. From Homogeneous to Heterogeneous

First of all, we visualize initial image search results using a
graph structure in Figure 3. Each node in the graph denotes an
image and there is a directed edge from image X to Y if and
only if Y is ranked among the top-10 candidates when X is the
query. We take a blurred and curved logo of Starbucks Coffee
(in the blue frame) as the query. According to the results in
Figure 3, other images in the graph could be categorized into
four exclusive groups:

1) true-positives (in red frames, e.g., A). These relevant
images share a large number of common features with
the query, and are naturally ranked among the top.

2) false-negatives (in green frames, e.g., B). These relevant
images do not have enough feature matches with the
query, therefore are not ranked among the top. We want
to promote the ranking of these images.

3) false-positives (in orange frames, e.g., C, D and E).
These irrelevant images somehow share a few common
features with the query and are ranked among the top.
We aim at filtering false matches on these images.

4) true-negatives (without colored frames). We could
simply ignore these irrelevant images.
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Obviously, it is the incorrect ranking of false-negatives and
false-positives that causes the unsatisfied search performance.
An ideal re-ranking algorithm should promote the false-
negatives to improve the recall, meanwhile filter the
false-positives to improve the precision. Intuitively, initial
search results are obtained by simply counting the number of
feature matches, but not all the features are equally important
for a specified query image. If a feature, denoted as f , is
located on the semantic region of the query image, it can
be used to retrieve the false-negative images containing f ,
otherwise we shall decrease the weighting of this feature in
order to weaken the false-positive images containing f .

Due to the essential importance of features, we explicitly
add them as another type of nodes into the image graph,
turning the originally homogeneous (containing only image
nodes) graph into heterogeneous (containing both image and
feature nodes). In formal, we define a heterogeneous graph
G = {I,F , E,S,W}. Here, I = {I1, I2, . . . , IN } and
F = {f1, f2, . . . , fM } are the sets of image and feature nodes,
and E is the set of undirected edges. There is a link between
image In and feature fm iff fm appears in In , i.e., In contains at
least one feature that shares the same quantization unit as fm .
S and W denote the sets of scores for images, and weights for
features. A sample graph is shown in Figure 5 (c). Based on
the heterogeneous graph, we can perform efficient propagation
algorithms to calculate the scores of images and weights of
features, and use the scores to re-rank the images for better
search quality.

B. Boosting Recall: Incremental Query Expansion

We start from the initial search process. Denote the query
image as Iq,0, and fm ∈ In (or equivalently In � fm) if the
feature fm appears on the image In . To be clear, we are working
on the quantized features rather than the original descriptors,
therefore fm appears on In means that at least one feature in In

shares the same quantization unit with fm . The initial search
process starts by setting the weights of all features appeared
in Iq,0 to 1:

w (fm) = I
(
fm ∈ Iq,0

)
(3)

and calculating the image scores by summing the weights of
the related features:

s (In) =
∑

m,fm∈In

w (fm) (4)

Sorting the scores yields the initial image ranking:

I0 = {
I0,1, I0,2, . . . , I0,N

}
(5)

However, due to the limited representative power of local
features, such a simple method might produce a number
of false-negatives. An intuitive solution arises from the
observation of Figure 3, in which we can find a true-positive
path connecting the query and most of the false-negatives.
It suggests adding features in the initial top-ranked images
into the search process. Here, we propose to expand the query
with simple operations in the heterogeneous graph. Formally,
we denote I0,1 in Eqn (5) as Iq,1, which means that we take

the top-ranked candidate, i.e., the image most likely to be
true-positive, as an extra query image. Then we update the
feature weights according to the new query image set:

w (fm) =
r∑

r ′=0

I
(
fm ∈ Iq,r ′

)
(6)

In the first round r = 1. The updated weights are used in
Eqn (4) to calculate the image scores for re-ranking.

This iterative process is repeated for R rounds. In each
round, we expand the query set with the highest-ranked image
which is not considered before, and update feature weights and
image scores orderly to re-rank the candidates. The proposed
algorithm is named Incremental Query Expansion (IQE).
R is the maximal expansion rounds and will be discussed
in Section IV-B.

We illustrate the IQE algorithm with a real example shown
in Figure 4. The query image is a faked sample of Mona Lisa
on with only the face region is preserved. Obviously, only a
few relevant features could be extracted on this image, and the
initial search result is of low recall. With 3 iterative rounds of
expansion, we find much more useful features to enrich the
query information, and in this way we significantly improve
the recall of search results.

C. Boosting Precision: Image-Feature Voting

It is worth noting that the above query expansion process
might also bring in false-positives, e.g., the third round of the
example illustrated in Figure 4. For this reason, the precision
of search results might still be unsatisfied. To filter out the
irrelevant images, we make full use of the intrinsic relationship
between images and features. A natural observation is that
true-positive images often contain relevant features, and the
relevant features are often found on true-positive images.
Therefore we follow the affinity propagation algorithms
on bipartite graphs [46] and design the Image-Feature
Voting (IFV) process to iteratively update the scores and
weights.

Recall that we have obtained the scores of images s (In)
and the weights of features w (fm) after the IQE algorithm.
Each voting round consists of four stages, i.e., image score
normalization, image-to-feature voting, feature-to-image
voting, and image re-ranking. The image score normalization
process calculates a belief function � (·) for each image:

� (In) = exp (−σ × γ (In)) (7)

where σ = 0.5 is the smoothing parameter and γ (In) is the
current ranking of In , i.e., the top-ranked image has γ (In) = 1,
the runner-up has γ (In) = 2, etc. Next, we perform the image-
to-feature voting process in which we update the features’
weights by accumulating images’ scores:

w (fm) =
∑

n,In�fm

� (In) (8)

and the feature-to-image voting process in which we reversely
calculate images’ scores by collecting weights of features:

s (In) =
∑

m,fm∈In

w (fm) (9)



XIE et al.: HETEROGENEOUS GRAPH PROPAGATION FOR LARGE-SCALE WEB IMAGE SEARCH 4291

Fig. 4. A real example of Incremental Query Expansion (best viewed
in color PDF). (a) The query image, with a relatively small semantic
region (face). Due to the low quality, few images in the initial search results
(c) are true-positives (marked with red solid frames). (b) Comparison of recall
at top-10, top-100 and top-1000 returned images before and after the query
expansion. (c) Initial search result (in the dashed frame). The features of
the top-ranked image are extracted and used for expanded search. (d) The
1st expanded search process. (e) The 2nd expanded search process. (f) The
3rd expanded search (the expanded query is false-positive), which brings
noises into the search result. Nevertheless, we retrieve much more true-
positives which are not found initially (marked with green solid frames). The
false-positives introduced in expansion could be efficiently filtered on the next
stage, Image-Feature Voting.

Finally, we re-rank images according to the updated scores.
The iteration would continue until convergence or the
maximal voting rounds V is reached.

Fig. 5. A toy example to illustrate the Image-Feature Voting process (best
viewed in color PDF). (a) The query image containing 8 features, among
which only 3 are located on the semantic region (the paint). Here, we
believe that the user’s search intention is the picture (The Creation of Adam)
instead of the surrounding texts. (b) The initial search result, where blue
frames indicate the true-positives. The mAP value of the initial searching is
only 0.67 = 1

4 (1/1 + 2/3 + 3/6 + 4/8). (c) Two voting rounds propagating
the affinity values back and forth between images and features. After one
round, we have obtained much improved search result (mAP is 0.95). After
two rounds, all the true-positives are top-ranked (mAP is 1, see (d)) and the
voting process converges. The top-3 weighted features (5, 7, 3) are just those
ones on the semantic region of the query image. Numbers in parenthesis are
the corresponding image scores.

Please note that the scoring function � (·) is very important
in our approach. It serves as a regularizer after each round of
voting. We do not make efforts to normalize the weights and
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Algorithm 1 Heterogeneous Graph Propagation

scores of features and images, as the constant normalization
factor is ignorable in the sorting operations.

Figure 5 shows a toy example containing 8 images and
8 features. One might observe that IFV improves the precision
of search results significantly. Algorithm 1 illustrates an
overall flowchart of IQE and IFV. Both procedures only
involve linear array operations and could be implemented
conveniently and efficiently in real practise.

D. Discussions

We propose two modules, i.e., IQE and IFV, which play
different but equally important roles in post-processing.
Intuitively, IQE is aimed at discovering new connections
between the query and originally false-negatives, whereas
IFV is focused on re-calculating the weights of images and
features for filtering false-positives. According to the results
observed in Section IV-B, IQE and IFV help to boost the
recall and precision of the initial search results, respectively,
which comes up to the expectation for which we design the
algorithms. Moreover, IQE and IFV cooperate with each other
very well. As observed in Section IV-C, using one of them
alone produces worse results than integrating them together.

Since both IQE and IFV algorithms include a quantization
stage, and the accumulated scores are manually defined, it is
difficult to provide a strict mathematical estimation on their
convergence rates. However, according to the application of
Random Walk theory on the HITS algorithm [46], convergence
could be mostly guaranteed if the higher ranked elements
(images or features) are always assigned with larger values.
Other successful applications of Random Walk in information
retrieval [9], [47] also provide evidences that such affinity
propagation algorithms have good mathematical properties.

In experiments, convergence is observed in every single case
(each query in each dataset, see Section IV-B).

E. Acceleration
The proposed online querying stage consists of three parts,

i.e., initial search, IQE and IFV. The time cost of initial search
depends on the baseline system.

For the IQE algorithm, we are actually performing R extra
search processes, which would naturally require R-fold time
of the baseline algorithm. We can reduce the time complexity
of this stage by sacrificing the expanded search accuracy to
some extent. For the Vector Quantization based methods such
as [5] and [23], we can only take 20% most frequent visual
words in the top-ranked image for expanded search. For Scalar
Quantization [19], the time used for each expanded search
could also be reduced to about 20% by adopting a tighter
expansion threshold d = 1 instead of d = 2 (see Section II-D).
Although this strategy causes the search accuracy drop slightly,
it helps to reduce the time cost of a 10-round query expansion
(R = 10, see Section IV-B) to just about twice of the initial
search process.

Each round of the IFV algorithm requires propagating
affinities between images and features. Suppose there are
N images in the database, and each image contains M features
in average, then a voting process with V rounds would require
2V N M arithmetic calculations in total. Typically we have
N = 106, M = 500 and V = 5 (see Section IV-B), and the
total number of floating operations is 5 ×109, requiring about
8s in a single 3.0GHz core. To accelerate, we can reduce the
number of images in re-ranking by considering only top-U
candidates after query expansion, where U � N is named
the maximal voting candidates. Consequently, the total
calculation count is reduced to 2V U M . Experimental results
in Section IV-B reveal that in a database containing one million
images, we could obtain very good results when we take
merely U = 1000 top-ranked candidates. In this way, we could
finish the voting process within 100ms (see Section IV-E).

F. Comparison to Previous Works

It is also instructive to discuss the difference between our
work and previous post-processing methods for image search.
We compare IQE and IFV with query expansion and diffusion-
based re-ranking algorithms, respectively.

We perform IQE, an incremental process for query expan-
sion, which is different with previous methods [8], [25], [48] in
which all the images are considered and added simultaneously.
IQE allows us to update the image ranking after each iteration
and select the most competitive candidate for expansion.
Consequently, it increases the probability that each expansion
is made on a true-positive. Let us go back to the real example
illustrated in Figure 4. If we simply take the top-10 candidates
in the initial result for expansion, only 3 of them are true-
positives. However, the number could increase to 7 when we
perform the expansion in an incremental manner. We also
count the above numbers over all the queries of the same
dataset, and the average percentage of true-positives used for
expansion (10 rounds) increases from 37% to 75% when we
use the incremental expansion strategy. This helps us to bring
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in more useful candidates and prevents from introducing too
many noises.

On the other hand, the voting process between images
and features is also a key innovation. Compared to previous
works [9], [29], [49], our method enjoys simplicity (one can
simply implement the voting process based on initial search
results), stability (the convergence of voting process is guar-
anteed by the Random Walk theory [46]), and scalability (it is
easy to scale up to the Web scale, e.g., billions of images).
Our method is also based on the assumption that each query
shall have enough number of true-positives (see Section IV-F
for details).

Another difference between our post-processing approach
(IQE followed by IFV) and other competitors, such
as [27] and [41], is that we do not need to use geometric
information such as location, scale and orientation of visual
words. By which, we reduce time and memory consumptions
as shown in Section IV-E. The absence of geometric
information makes it very difficult to perform spatial
verification. Fortunately, we verify that the geometry-free
image-feature voting process is also capable of filtering false-
positives. Compared to the relevant works [39], [48] which
is also geometry-free, we report higher search accuracy (see
Section IV-C) thanks to the cooperation between IQE and IFV.
We have performed several different strategies with [48]
which is probably the most similar work to ours, such as
adding the expanded images one by one, selecting features by
image-feature voting, etc. In experiments, we observe higher
accuracy and lower time complexity compared to [48].

Moreover, we propose a heterogeneous graph structure,
which is different from the homogeneous one in [50], so that
we can formulate both the IQE and IFV algorithms within the
framework of affinity propagation. Although heterogeneous
graph is previously adopted in very similar tasks [51], our
work serves as a pioneer to represent images and features
as nodes explicitly in a graph structure. The generalized
formulation makes our approach very easy to implement
yet efficient to carry out. It could be applied onto many
other BoVW-based image search algorithms, even when other
post-processing algorithms have been adopted in advance.

IV. EXPERIMENTS

A. Datasets and Implementation Details
We conduct two parts of experiments on four publicly

available datasets.
The first part is performed on two near-duplicate Web

image datasets, i.e., the DupImage dataset [52] containing
1104 images from 33 groups, and the CarLogo-51 dataset [32]
containing 51 popular car logos and 11903 images. We also
crawl one million irrelevant images from the Web as dis-
tractors. To evaluate performance with respect to the number
of distractors, we construct 3 smaller subsets (100K, 200K
and 500K) from the basic (1M) set by random sampling.
All the greyscale images are resized with their aspect ratio
preserved so that the larger axis has 300 pixels. We extract
RootSIFT descriptors [41] on the regions-of-interest detected
by the DoG operator [2], and use Scalar Quantization [19] to
encode descriptors into 256-bit binary codes. The first 32 bits

Fig. 6. The average recall-at-1000 value and average querying time (s) with
respect to R in the IQE algorithm.

Fig. 7. The mAP value and average querying time (s) with respect to U in
the IFV algorithm. We fix R = 10 and V = 5.

of quantized codes are taken as the address in the inverted
index and the remaining 224 (256 − 32) bits and image IDs
are stored in the linked list. On the online querying stage, the
inverted index is visited with codeword expansion threshold
d = 2 (d = 1 in the IQE process for efficiency) and Hamming
threshold κ = 24.

The second part is performed on two object retrieval
datasets, i.e., the Oxford buildings (Oxford5K) dataset [5] with
5063 images and 55 queries, and the Paris buildings (Paris6K)
dataset [18] with 6391 images and 55 queries. Both
datasets are mixed with 100K Flickr distractor images,
which are also released by the same authors. All the
images are turned into greyscale and not resized. RootSIFT
descriptors [41] are extracted on the regions-of-interest
detected by the Hessian Affine operators [11]. The Approx-
imate K-Means (AKM) clustering [5] with one million
codewords are performed, and descriptors are encoded with
hard quantization. We use the �p-norm IDF [23] for computing
feature weights in the initial search process.

It is worth noting that we have used two different
approaches [19], [23] for initial search. We aim at evaluating
our post-processing algorithm on different baseline systems to
reveal its generalization ability.

B. Impact of Parameters
We study the impact of parameters in our approach, i.e.,

maximal expansion rounds R, maximal voting candidates U
and maximal voting rounds V . We evaluate the recall-at-1000
(in IQE) and the mAP value using the DupImage dataset with
one million distractors, and plot the results in Figure 6, 7 and 8,
respectively. One can see that both IQE and IFV significantly
improve the quality of initial search results.
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Fig. 8. The mAP value and average querying time (s) with respect to V in
the IFV algorithm. We fix R = 10 and U = 1000.

TABLE I

THE mAP VALUES ON THE DUPIMAGE DATASET WITH

DIFFERENT NUMBERS OF DISTRACTOR IMAGES

We have also recorded the average querying time in each
figure. It can be observed that the time complexity grows
almost linearly with the parameters R, U and V , whereas
using large parameters, say, R = 20 or V = 10, helps
little to improve the search performance. We also observe
quite similar regularity on other three datasets, either with
or without distractor images, therefore we believe that the
accuracy-complexity tradeoff is a general technique that boosts
online querying efficiency. Therefore, we choose the following
set of parameters in later experiments: maximal expansion
rounds R = 10, maximal voting candidates U = 1000
and maximal voting rounds V = 5. Of course, the above
parameters could be determined automatically by, for example,
defining a stopping threshold. We do not develop an automatic
parameter tuning algorithm, since the fixed parameters work
well in other cases, i.e., produce satisfied mAP values with
reasonable time/memory consumptions in all the datasets. The
observation above also provides an intuitive illustration of the
post-processing modules’ convergence properties. For every
single case (each query in each dataset), the difference in
mAP between using (R = 20, V = 10) and (R = 50, V = 50)
is less than 0.01.

C. Performance Evaluation
We report the performance of our approach and other com-

petitors on the near-duplicate experiments in Table I and II,
respectively. On the DupImage and CarLogo-51 datasets
with one million distractors, our approach reports the mAP
value of 0.72 and 0.30, giving relatively 33.2% and 42.9%
improvement over the baseline, Scalar Quantization [19].

We also report the performance of our approach and
other competitors on the Oxford5K and Paris6K datasets

TABLE II

THE mAP VALUES ON THE CARLOGO-51 DATASET WITH

DIFFERENT NUMBERS OF DISTRACTOR IMAGES

TABLE III

THE mAP VALUES ON THE OXFORD5K AND PARIS6K DATASETS,

WITH OR WITHOUT FLICKR100K DISTRACTORS

with 100K distractors in Table III. One can observe that our
algorithm also boosts the performance of the baseline retrieval
system [23]. Moreover, our approach significantly outperforms
another geometry-free post-processing algorithm [39], and
works slightly better than a very related work, Hamming
query expansion [48]. Although the reported accuracy of
our approach is a little lower than some algorithms with
complicated post-processing stages [27], [41], it is still
promising considering it does not use any geometric informa-
tion of local features, which enjoys the advantage of low time
and memory consumptions as shown in Section IV-E. Our
algorithm could also be appended after those algorithms
to further improve the search performance with little extra
computation.

Based on above two experiments, we can conclude
that we have designed a generalized re-ranking algorithm,
which could be applied after more than one image search
baselines, and on both near-duplicate and object retrieval
datasets.

D. Sample Results
Figure 9 shows a representative query in the DupImage

dataset with one million distractors. Due to the low quality
of the query image (the main part of the query image contains
random noises), the numbers of efficient matches between the
query image and some true-positives are even less than 3
(see the examples in blue or green frames for examples).
For such poor matched images, both baseline algorithms
([4] and [19]) fail to retrieve them from the large database.
With IQE and IFV, we successfully find most hard true-
positives. It is worth noting that in this sample, we improve
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Fig. 9. A representative query and search results on the DupImage dataset
with one million distractors (best viewed in color PDF). (a) A difficult query
image with random noises. (b) Precision-recall curves on Hierarchical Visual
Vocabulary Tree [4], Scalar Quantization [19] and our work. We obtain
significant improvement on the mAP value (areas under the precision-recall
curves). (c) (d) Top ranked (21 to 40) images returned by Scalar Quantization
and our approach (the first 20 images are true-positives for both algorithms
and therefore are not shown). We label true-positives with colored frames.
In which, blue frames indicate images with only one or two feature match
with the query, and green frames indicate those with no matches: it is difficult
for the baseline algorithms ([4] and [19]) to rank these images among the top
or even retrieve them.

the mAP (area under the precision-recall curve) impressively
to 0.952, which is much better than 0.337 by [4] and
0.521 by [19].

TABLE IV

AVERAGE QUERYING TIME ON THE DUPIMAGE AND CARLOGO-51

DATASETS WITH DIFFERENT SETS OF DISTRACTORS. SCALAR

QUANTIZATION [19] SERVES AS THE INITIAL SEARCH

ALGORITHM. WE ONLY USE A SINGLE 3.0GHz CORE.

LISTED TIME IS IN MILLISECONDS

TABLE V

AVERAGE QUERYING TIME ON THE OXFORD5K AND PARIS6K DATASETS,

WITH OR WITHOUT FLICKR100K DISTRACTORS. AKM WITH

�p -IDF [23] SERVES AS THE INITIAL SEARCH ALGORITHM.

WE ONLY USE A SINGLE 3.0GHz CORE. LISTED

TIME IS IN MILLISECONDS

Fig. 10. Comparison of average querying time of different methods on the
DupImage dataset with one million distractors (not including the time cost
for descriptor extraction, quantization and indexing). The parallelized versions
are implemented with all 8 cores.

E. Time and Memory Costs

We evaluate our algorithm on a CPU with 8 × 3.0GHz
cores. A theoretical analysis of time complexity could be found
in Section III-E.

The time cost of each separate module for near-duplicate
and object retrieval datasets is listed in Table IV and V,
respectively. All the techniques discussed in III-E have been
adopted for acceleration. It is shown that our algorithm is
highly scalable, as the time cost grows sub-linearly with the
dataset size. For the DupImage and CarLogo-51 datasets with
one million distractors, time cost of different approaches for a
single query is summarized in Figure 10. For the Oxford105K
and Paris106K datasets, our algorithm requires about 450ms
to return search results, which is significantly faster than those
complicated methods (both [27] and [41] requires more than
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TABLE VI

PIECEWISE STATISTICS ON THE mAP GAIN OVER SCALAR

QUANTIZATION [19]. RESULTS ARE REPORTED

ON THE DUPIMAGE DATASET WITH

ONE MILLION DISTRACTORS

1s to process a query). Comparing with the most similar
work [48] which requires 955ms for a query with spatial
matching, our method works slightly better but requires only
half time consumption.

An inverted file needs 4 bytes to store the image ID for
each visual word for Vector Quantization [5], and 32 bytes
to store the image ID with remaining binary codes for
Scalar Quantization [19]. If the geometric information is
also stored, at least 4 more bytes (for spatial coordinates)
are required for a visual word. Our post-processing
algorithms do not use geometric information, which saves
50% and 11% of the total storage in the above cases,
respectively.

In one word, our algorithm beats the baseline performance
significantly with two efficient post-processing modules. The
time cost of these algorithms, as we have reported in the
previous part, is about twice of the baseline algorithm.
Compared to complicated post-processing algorithms such
as [27], [41], and [48], our method requires much less time
or memory consumptions. Therefore, it is convenient and
worthwhile to transplant our model onto Web-scale image
search applications.

F. Where Does the Improvement Come From?

Finally we conduct an interesting comparison between
Scalar Quantization [19] and our work on the DupImage
dataset with one million distractors. We partition query images
into four groups according to the initial mAP value using
baseline algorithm (Scalar Quantization), and calculate the
averaged mAP gain in each group respectively. From the
results shown in Table VI, we can observe that our approach
improves the mAP value mainly on the queries with medium
difficulties, i.e., with initial mAP values between 0.2 and 0.8.
For those very difficult samples with initial mAPs less
than 0.2, our approach works even worse than the baseline
algorithm, simply because we can find few true-positives in
the top-ranked candidates for IQE, and IFV is also polluted
by a dominant number of irrelevant features. Therefore, it is
not reasonable to adopt our approach in the case that only
few samples could be matched to each query image, such as
in the UK-Bench dataset [4] (only 4 images in each near-
duplicate group). Our approach fits very well for the large-
scale Web image search problem, in which we can expect a
large number of visually similar samples for each querying
image.

V. CONCLUSIONS

The major innovation of this paper lies in the post-
processing stage, on which we investigate the search process
from a graph-based perspective. With an intuition to emphasize
the importance of features, we introduce a heterogeneous
graph consisting of both image and feature nodes explicitly,
and propose two novel algorithms, i.e., Incremental Query
Expansion (IQE) and Image-Feature Voting (IFV), to boost
the recall and precision of the initial search results, respec-
tively. Since the proposed algorithms do not require using
geometric information, time and memory consumptions on
the online querying stage are significantly reduced. The inde-
pendency between our method and initial search processes
also makes it convenient to be adopted in many other
tasks. Experiments on large-scale image datasets reveal that
the proposed approach enjoys great advantages over the
baseline methods [19], [23], and are more efficient in
time and memory consumptions compared to complicated
post-processing algorithms [27], [41].
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