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Abstract State-of-the-art image classification approaches
are mainly based on robust image representation, such as
the bag-of-features (BoF) model or the convolutional neural
network (CNN) architecture. In real applications, the ori-
entation (left/right) of an image or an object might vary
from sample to sample, whereas some handcrafted descrip-
tors (e.g., SIFT) and network operations (e.g., convolution)
are not reversal-invariant, leading to the unsatisfied stabil-
ity of image features extracted from these models. To deal
with, a popular solution is to augment the dataset by adding
a left-right reversed copy for each image. This strategy
improves the recognition accuracy to some extent, but also
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brings the price of almost doubled time and memory con-
sumptions on both the training and testing stages. In this
paper, we present an alternative solution based on design-
ing reversal-invariant representation of local patterns, so that
we can obtain the identical representation for an image and
its left-right reversed copy. For the BoF model, we design
a reversal-invariant version of SIFT descriptor named Max-
SIFT, a generalizedRIDE algorithmwhich can be applied to
a large family of local descriptors. For the CNN architecture,
wepresent a simple idea of generating reversal-invariant deep
features (RI-Deep), and, inspired by which, design reversal-
invariant convolution (RI-Conv) layers to increase the CNN
capacity without increasing the model complexity. Experi-
ments reveal consistent accuracy gain on various image clas-
sification tasks, including scene understanding, fine-grained
object recognition, and large-scale visual recognition.

Keywords Image classification · BoF · CNN ·
Reversal-invariant image representation

1 Introduction

Image classification is a fundamental problem in com-
puter vision which implies a large number of applications.
One of the most popular approaches for image classifi-
cation is the bag-of-features (BoF) model (Csurka et al.
2004), a statistics-based algorithm in which local features
are extracted, encoded and summarized into global image
representation. Recently, as the availability of large-scale
image databases (Deng et al. 2009) and powerful compu-
tational resources, convolutional neural networks (CNN)
have been dominant in either large-scale image classifica-
tion (Krizhevsky et al. 2012), or extracting transferrable
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Fig. 1 SIFT (Lowe 2004) matching with (red) and without (blue)
reversal invariance (best viewed in color). In the latter case, it is dif-
ficult to find feature matches even between an image and its reversed
copy (the above example). RIDE (illustrated in Sect. 4) brings rever-
sal invariance to local descriptors, and significantly reduces the feature
(e.g., BoF) distance between each pair of reversed objects (Color figure
online)

features (Donahue et al. 2014; Jia et al. 2014; Razavian et al.
2014) for various computer vision tasks.

People often capture images or photos without caring
about its left/right orientation, since an image and its
reversed copy often deliver the same visual concept. How-
ever, as we shall see in Sect. 3, statistics-based image
representation is not often robust to image reversal. The
reason mainly lies in that handcrafted descriptors such as
SIFT (Lowe 2004) might change completely after being
reversed (Fig. 1), therefore it is difficult to find feature cor-
respondence between an image and its reversed version.
Consequently, the BoF representation of an image might
be totally different after it is reversed. Meanwhile, most
CNN models are somewhat sensitive to image reversal,
since convolution is not reversal-invariant. The unsatisfied
feature stability limits machine learning algorithms from
learning discriminative models. To cope with, researchers
propose an effective approach named data augmentation,

whichworks by adding a reversed copy for each image (Chat-
field et al. 2011; Chai et al. 2013), or reversing each training
image in the CNN training process with a probability of
50% (Krizhevsky et al. 2012). Although data augmentation
consistently improves recognition accuracy, it still suffers
the disadvantage of being more computationally expen-
sive, especially on the online testing stage of the BoF
model.

This paper presents an alternative idea, i.e., designing
reversal-invariant representation of local patterns for both
the BoF and CNN models. Although this idea has been pre-
viously used to dealwith descriptormatching issues (Guoand
Cao 2010;Ma et al. 2010; Zhao andNgo 2013), we argue that
these existing approaches are not mainly designed for image
classification, and their performance is below satisfaction due
to the lack of consideration on some key properties. We will
detail this point in Sect. 4.5.

On the BoF model, we start with observing the differ-
ence between the original and reversed descriptors, and then
suggest computing the orientation of each descriptor so that
we can cancel out the impact of image reversal. For orien-
tation estimation, we adopt an approximated summation on
the gradient-based histograms of SIFT. Based on this the-
ory, we propose Max-SIFT and RIDE (Reversal-Invariant
Descriptor Enhancement), two simple, fast yet generalized
algorithms which bring reversal invariance to local descrip-
tors. Both Max-SIFT and RIDE guarantee to generate iden-
tical representation for an image and its left-right reversed
copy. Experiments reveal that Max-SIFT and RIDE produce
consistent accuracy improvement to image classification.
RIDE outperforms data augmentation with higher recogni-
tion rates and lower time/memory consumptions. Max-SIFT
and RIDE appear as preliminary publications (Xie et al.
2015b) and (Xie et al. 2015d), respectively.

In this extended journal version, we generalize the idea to
the state-of-the-art CNN architectures. We first propose RI-
Deep, a simple algorithm which extracts reversal-invariant
deep features by post-processing. Then we design a reversal-
invariant convolution operation (RI-Conv) and plug it into
conventional CNNs, so that we can train reversal-invariant
deep networks, which generate reversal-invariant deep fea-
tures directly (without requiring post-processing). RI-Conv
enjoys the advantage of enlarging the network capacity with-
out increasing the model complexity. Experiments verify the
effectiveness of our algorithms, demonstrating the impor-
tance of reversal invariance in training efficient CNNmodels
and transferring deep features.

The remainder of this paper is organized as follows. Sec-
tion2briefly introduces relatedwork. Section3 elaborates the
importance of reversal invariance of image representation.
Sections 4 and 5 illustrate our algorithms towards reversal-
invariant representation of local patterns, and the application
on the BoF and CNN models, respectively. Experiments are
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shown in each section. Finally, we conclude our work in
Sect. 6.

2 Related Work

2.1 The BoF Model

The BoF model (Csurka et al. 2004) starts with describing
local patches. Due to the limited descriptive power of raw
image pixels, handcrafted descriptors, such as SIFT (Lowe
2004), HOG (Dalal and Triggs 2005) and LCS (Clin-
chant et al. 2007), are widely adopted. Although these
descriptors can be automatically detected using operators
such as DoG (Lowe 2004) and MSER (Matas et al. 2004),
the dense sampling strategy (Bosch et al. 2006; Tuytelaars
2010) often works better on classification tasks.

Next, a visual vocabulary (codebook) is trained to esti-
mate the feature space distribution. The codebook is often
computed with iterative algorithms such as K-Means or
GMM. Descriptors are then encoded with the codebook.
Popular feature encodingmethods include hard quantization,
sparse coding (Yang et al. 2009), LLC encoding (Wang et al.
2010), super-vector encoding (Zhou et al. 2010), Fisher vec-
tor encoding (Sanchez et al. 2013), etc.

On the final stage, quantized feature vectors are aggre-
gated as compact image representation. Sum pooling, max-
pooling and �p-norm pooling (Feng et al. 2011) can be
different choices, and visual phrases (Zhang et al. 2009; Xie
et al. 2014a) and/or spatial pyramids (Grauman and Darrell
2005; Lazebnik et al. 2006) are constructed for richer spa-
tial context modeling. The representation vectors are then
summarized (Xie et al. 2015c) and fed into machine learning
algorithms such as the SVM.

It is also important to organize local features according
to the property of the image dataset. A popular case is fine-
grained object recognition, which is aimed at predicting the
object class at a finer level of granularity. Given that each
image contains, say, a bird, it remains to decidewhich species
is depicted. As observed in Berg and Belhumeur (2013),
Chai et al. (2013),Gavves et al. (2014), the key tofine-grained
recognition is the alignment of semantic object parts, such as
the head or tail of a bird. Meanwhile, for scene understand-
ing, it is reasonable to capture other types of visual clues to
assist recognition, such as orientations (Xie et al. 2014b) and
important semantic regions (Lin et al. 2014b).

2.2 Convolutional Neural Networks

TheConvolutionalNeuralNetwork (CNN) serves as a hierar-
chical model for large-scale visual recognition. It is based on
a network with enough neurons is able to fit any complicated
data distribution. In the early years, neural networks were

shown effective for simple recognition tasks such as digit
recognition (LeCun et al. 1990). More recently, the availabil-
ity of large-scale training data (e.g., ImageNet (Deng et al.
2009)) and powerful GPUs makes it possible to train deep
CNNs (Krizhevsky et al. 2012) which significantly outper-
form the BoF-based models. A CNN is composed of several
stacked layers. In each of them, responses from the previ-
ous layer are convoluted and activated by a differentiable
function. Hence, a CNN can be considered as a composite
function, and is trained by back-propagating error signals
defined by the difference between supervised and predicted
labels at the top level. Recently, efficient methods were
proposed to help CNNs converge faster and prevent over-
fitting, such as ReLU activation (Krizhevsky et al. 2012),
dropout and batch normalization (Ioffe and Szegedy 2015).
It is believed that deeper networks produce better recogni-
tion results (Simonyan and Zisserman 2015; Szegedy et al.
2015).

The intermediate responses ofCNNs, or the so-called deep
features, serve as an efficient image description or a set of
latent visual attributes (Donahue et al. 2014). They can be
used for various types of vision applications, including image
classification (Jia et al. 2014), image retrieval (Razavian et al.
2014; Xie et al. 2015a) and object detection (Girshick et al.
2014). A discussion of how different CNN configurations
impact deep feature performance is available in (Chat-
field et al. 2014). Visualization also helps understanding the
behaviour of CNN models (Zeiler and Fergus 2014).

2.3 The Invariance of Descriptors

One of the major shortcomings of the BoF and CNN mod-
els is the unsatisfied stability of image representation. An
important way of improvement is to study the invariance
of local descriptors or patch operators. SIFT (Lowe 2004)
achieves scale and rotation invariance by selecting the max-
ima in the scale space, and picking up a dominant orientation,
via gradient computation, and rotating the local patch accord-
ingly. Other examples include Shape Context (Belongie et al.
2002), SURF (Bay et al. 2008),BRIEF (Calonder et al. 2010),
BRISK (Leutenegger et al. 2011), ORB (Rublee et al. 2011),
FREAK (Alahi et al. 2012), etc. Radial transform (Takacs
et al. 2013) and polar analysis (Liu et al. 2014) play impor-
tant roles in generating rotation-invariant local features.

In some vision tasks such as fine-grained recognition,
objects might have different left/right orientations. Since
handcrafted descriptors (such as SIFT) and convolution oper-
ations are not reversal-invariant, feature representation of
an image and its reversed version might be totally differ-
ent. To this point, researchers propose to augment the image
datasets by adding a reversed copy for each original image,
andperformclassificationon the enlarged training and testing
sets (Chatfield et al. 2011; Chai et al. 2013). In Paulin et al.
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(2014), it is even suggested to learn a larger image transfor-
mation set for data augmentation. Similar strategies are also
adopted in the CNN training process, including a popular
method which adds reversal on each training sample with
a probability of 50%, which, as a part of data augmenta-
tion, is often cooperated with other techniques such as image
cropping (Krizhevsky et al. 2012). Although data augmenta-
tion improves the recognition accuracy consistently, it brings
heavier computational overheads, e.g., almost doubled time
and memory consumptions on the online testing stage of the
BoF model, or the requirement of more training epochs to
make the CNN training process converge.

There are also efforts on designing reversal-invariant
descriptors for image retrieval. Some of them (Ma et al. 2010;
Xie et al. 2015b) consider geometry-inverted and brightness-
inverted variants, and perform a symmetric function, such as
dimension-wise summation or maximization, to cancel out
the reversal operation. Other examples include setting extra
flag bits to represent the reversal information (Guo and Cao
2010), or enforcing that the flows of all regions should follow
a pre-defined direction (Zhao and Ngo 2013). These pieces
of work inspire us that symmetry is the key to reversal invari-
ance (Skelly and Sclaroff 2007; Wang et al. 2011).

Despite their success, all of these methods are mainly
designed for descriptormatching or object retrieval, and their
performance on image classification is below satisfaction
(see Table 3). In this paper, we propose efficient algorithms
towards reversal-invariant representation, which benefits the
recognition task.

3 Why Reversal Invariance?

People often take pictures without caring about the left/right
orientation, since an image and its left-right reversed copy
often have the same semantic meaning. Consequently, there
exist both left-oriented and right-oriented objects in almost
every popular image datasets, especially in the case of fine-
grained object recognition on animals, man-made tools,
etc. For example, among 11,788 images of the Bird-200
dataset (Wah et al. 2011), at least 5000 birds are oriented to
the left and other 5000 oriented to the right. In the Aircraft-
100 dataset (Maji et al. 2013) with 10,000 images, we can
also find more than 4800 left-oriented and more than 4500
right-oriented aircrafts, respectively.

However, we argue that most image representation mod-
els are sensitive to image reversal, i.e., the features extracted
from an image and its reversed version may be completely
different. Let us take a simple case study using theBoFmodel
which encodes SIFT with the Fisher vectors (Perronnin et al.
2010). Detailed settings are shown in Sect. 4.6. We perform
image classification and retrieval tasks on the Aircraft-100
dataset (Maji et al. 2013). We choose this dataset mainly

because that the orientation of an aircraft is more easily
determined than, say, a bird. Based on the original dataset,
we manually reverse all the left-oriented images, generating
a right-aligned dataset.

With the standard training/testing split (around2/3 images
are used for training and others for testing), the recogni-
tion rate is 53.13% on the original dataset and rises up to
63.94% on the right-aligned dataset, with a more-than-10%
absolute accuracy gain (amore-than-20% relative gain). This
implies that orientation alignment brings a huge benefit to
fine-grained object recognition.

Still on the Aircraft-100 dataset. To diagnose, we use
all (10,000) images in the right-aligned dataset for train-
ing, and evaluate the model with the entire right-aligned
and left-aligned datasets, respectively. When we test on the
right-aligned dataset, i.e., the training images are identical
to the testing image, the classification accuracy is 99.73%
(not surprising since we are just performing self-validation).
However, when we test on the left-aligned dataset, i.e., each
testing image is the reversed version of a training image,
the accuracy drops dramatically to 46.84%. This experiment
reveals that a model learned from right-oriented objects may
not recognize left-oriented objects very well.

Lastly, we perform image retrieval on the right-aligned
dataset to directly evaluate the feature quality. Given a query
image, we sort the candidates according to the �2-distance
between the representation vectors. Some typical results are
shown in Fig. 2. When the query is of the same orienta-
tion (right) with the database, the search result is satisfying
(mAP is 0.4143, the first false-positive is ranked at #18).
However, if the query image is reversed, its feature represen-
tation changes thoroughly, and the retrieval accuracy drops
dramatically (mAP is 0.0025, the first true-positive is ranked
at #388). It is worth noting, in the latter case, that the reversed
version of the query image is ranked at #514. This means that
more than 500 images, most of them coming from different
categories, are more similar to the query than its reversed
copy, because the image feature is not reversal-invariant.

Although all the above experiments are based on the BoF
model with SIFT and Fisher vectors, we emphasize that sim-
ilar trouble also arises in the case of extracting deep features
from a pre-trained neural network. Since convolution is not
reversal invariance, the features extracted on an image and
its reversed version are often different, even when the net-
work is trained with data augmentation (each training image
is reversed with a 50% probability). We will present detailed
analysis on this point in Sect. 5.

Since an image and its reversed copy might have totally
different feature representation, in a fine-grained dataset con-
taining both left-oriented and right-oriented objects, we are
implicitly partitioning the images of each class into two
(or even more) prototypes. Consequently, the number of
training images of each prototype is reduced and the risk
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#1: BAE-125 #2: BAE-125 #3: BAE-125

#4: BAE-125 #5: BAE-125 #6: BAE-125

#7: BAE-125 #8: BAE-125

BAE-125

#9: BAE-125

Mean AP: 0.4143
Mean Dist.: 0.83
Mean TP Dist.: 0.34
Self-Ranking: #1
First FP: #18

QUERY

#1: 707-320 #2: DC-3 #3: Cessna-560

#4: MD-80 #5: 737-400 #6: 747-100

#7: MD-11 #8: 757-300

BAE-125

#514: BAE-125

Mean AP: 0.0025
Mean Dist.: 1.09
Mean TP Dist.: 1.06
Self-Ranking: #514
First TP: #388

QUERY

Fig. 2 Content-based image retrieval on the right-orientedAircraft-100 dataset (best viewed in color). We use the same query image with different
orientations. AP for average precision, TP for true-positive, FP for false-positive (Color figure online)

of over-fitting increased. With this observation, some algo-
rithms (Chatfield et al. 2011; Chai et al. 2013) augment
the dataset by generating a reversed copy for each image
to increase the number of training cases of each prototype,
meanwhile the testing stage of deep networks often involves
image reversal followed by score average (Krizhevsky et al.
2012; Simonyan and Zisserman 2015). We propose a differ-
ent idea that generates reversal-invariant image representa-
tion in a bottom-up manner.

4 Reversal Invariance for BoF

This section introduces reversal invariance to the BoF model
by designing reversal-invariant local descriptors. We first
discuss the basic principle of designing reversal-invariant
descriptors, and then provide a simple solution namedMax-
SIFT. After that, we generalize Max-SIFT as RIDE, and
show that it can be applied to more types of local descriptors.
Experiments on the BoF model and Fisher vector encoding
verify the effectiveness of our algorithms.

4.1 Reversal-Invariant Local Descriptors

4.1.1 Reversal Invariance as a Symmetric Function

We start from observing how SIFT, a typical handcrafted
descriptor, changes with left-right image reversal. The struc-

0 1 2 3
4 5 6 7
8 9 10 11

12 13 1514

Original SIFT
3’ 2’ 1’ 0’
7’ 6’ 5’ 4’

11’ 10’ 9’ 8’
15’ 13’ 12’14’

Reversed SIFT

Gradient Histogram

2 1

0

765

4

3 2’ 3’

4’

5’6’7’

0’

1’
Original

Index
Reversed

Index

Fig. 3 SIFT and its reversed version. Corresponding grids/gradients
are marked with the same number. Numbers in the original SIFT indi-
cate the order of collecting grids/gradients

ture of a SIFT descriptor is illustrated in Fig. 3. A patch
is partitioned into 4 × 4 spatial grids, and in each grid
a 8-dimensional gradient histogram is computed. Here we
assume that spatial grids are traversed from top to bot-
tom, then left to right, and gradient intensities in each grid
is collected in a counter-clockwise order. When an image
is left-right reversed, all the patches on it are reversed as
well. In a reversed patch, both the order of traversing spatial
grids and collecting gradient values are changed, although
the absolute gradient values in the corresponding directions
do not change. Taking the lower-right grid in the original
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SIFT descriptor (#15) as the example. When the image is
reversed, this grid appears at the lower-left position (#12),
and the order of collecting gradients in the grid changes from
(0, 1, 2, 3, 4, 5, 6, 7) to (4, 3, 2, 1, 0, 7, 6, 5).

Denote the original SIFT as d = (d0, d1, . . . , d127),
in which di×8+ j = ai, j for i = 0, 1, . . . , 15 and j =
0, 1, . . . , 7. As shown in Fig. 3, each index (0 to 127)
of the original SIFT is mapped to another index of the
reversed SIFT. For example, d117 (a14,5, the bold arrow in
Fig. 3) would appear at d111 (a13,7) when the descriptor is
reversed. Denote the index mapping function as f (·) (e.g.,
f (0) = 28, f (117) = 111), so that the reversed SIFT can
be computed as: dR .= f (d) = (

d f (0), d f (1), . . . , d f (127)
)
.

Towards reversal invariance, we need to design a descrip-
tor transformation function r (d), so that r (d) = r

(
dR

)

for any descriptor d. For this, we define r (d) = s
(
d,dR

)
, in

which s (·, ·) satisfies symmetry, i.e., s (d1,d2) = s (d2,d1)
for any pair (d1,d2). In this way reversal invariance is

achieved: r (d) = s
(
d,dR

) = s
(
dR,d

) = s
(
dR,

(
dR

)R) =
r
(
dR

)
. We use the fact that

(
dR

)R = d holds for any descrip-
tor d.

4.1.2 The Max-SIFT Descriptor

There are a lot of symmetric function s (·, ·), such as
dimension-wise summation or maximization. Here we con-
sider an extremely simple case named Max-SIFT, in which
we choose the one in d and dR with the larger sequen-
tial lexicographic order. Here, by the sequential lexico-
graphic order we mean to regard each SIFT descriptor as
a sequence with length 128, and on each dimension (an
element in the sequence), the larger value has a higher prior-
ity. The generalized algorithm for selecting the vector with
the maximal sequential lexicographic order is provided in
Algorithm 1.

Algorithm 1 Selecting the Vector with the Maximal
Sequential Lexicographic Order
1: Input: T descriptors {v1, . . . , vT } of equal length L .
2: procedure MaxSeqLexOrder
3: Initialization: S = {1, 2, . . . , T }.
4: for l = 1, 2, . . . , L do
5: S ← {

t | t ∈ S ∧ vt,l = maxt∈S
{
vt,l

}}
;

6: if |S| = 1 then
7: break
8: end if
9: end for
10: Finalization: t� = mint∈S {t};
11: end procedure
12: Output: m̂ax {v1, . . . , vT } .= vt� .

Therefore, to compute the Max-SIFT descriptor for d, we
only need to compare the dimensions of d and dR one by one

and stop at the first difference. Let us denote the Max-SIFT
descriptor of d by d̂, and use the following notation:

d̂ = r (d) = m̂ax
{
d,dR

}
, (1)

where m̂ax {·, ·, . . . , ·} denotes the element with themaximal
sequential lexicographic order (see Algorithm 1).

Algorithm 2 Max-SIFT
1: Input: D = {dm}Mm=1.
2: procedure Max- SIFT
3: for m = 1, 2, . . . , M do
4: Reversal: computing dRm ;
5: Selection: d̂m = m̂ax

{
dm ,dRm

}
;

6: end for
7: end procedure
8: Output: D̂ = {

d̂m
}M
m=1.

The pseudo codes of Max-SIFT are illustrated in Algo-
rithm 2. We point out that there are many other symmetric
functions, but their performance is often inferior to Max-
SIFT. For example, using Average-SIFT, i.e., r (d) =
1
2

(
d + dR

)
, leads to 1–3% accuracy drop on every single

image classification case.

4.2 RIDE: Generalized Reversal Invariance

4.2.1 The Orientation of SIFT

Let us choose the descriptor from d and dR in a more
generalized manner. In general, we define an orientation
quantization function q (·), and choose the one in

{
d,dR

}

with the larger function value. Ideally, q (·) can capture the
orientation property of a descriptor, e.g., q (d) reflects the
extent that d is oriented to the right. Recall that in the origi-
nal version of SIFT (Lowe 2004), each descriptor is naturally
assigned an orientation angle θ ∈ [0, 2π), so thatwe can sim-
ply take q (d) = cos θ , but orientation is often ignored in the
implementation of dense SIFT (Bosch et al. 2006; Vedaldi
and Fulkerson 2010). We aim at recovering the orientation
with fast computations.

The major conclusion is that, the global orientation of a
densely-sampled SIFT descriptor can be estimated by accu-
mulating clues from the local gradients. For each of the 128
dimensions, we take its gradient value and lookup for its (1 of
8) direction. The gradient value is then decomposed into two
components along the x-axis and y-axis, respectively. The
left/right orientation of the descriptor is then computed by
collecting the x-axis components over all the 128dimensions.
Formally,wedefine 8orientation vectorsu j , j = 0, 1, . . . , 7.
According to the definition of SIFT in Fig. 3, we have
u j = (cos ( jπ/4) , sin ( jπ/4))�. The global gradient can
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Fig. 4 Estimating the orientation of SIFT

be computed as G (d) = (
Gx ,Gy

)� = ∑15
i=0

∑7
j=0ai, ju j .

The computation of G (d) is illustrated in Fig. 4. The proof
is provided in Appendix 1.

4.2.2 The RIDE Algorithm

We simply take Gx as the value of quantization function,
i.e., q (d) = Gx (d) for every d. It is worth noting that
q (d) = −q

(
dR

)
holds for any d, therefore we can sim-

ply use the sign of q (d) to compute the reversal-invariant
descriptor transform d̃:

d̃ = r (d) =
⎧
⎨

⎩

d q (d) > 0
dR q (d) < 0
m̂ax

{
d,dR

}
q (d) = 0

. (2)

Wename the algorithmRIDE (Reversal-InvariantDescriptor
Enhancement). When q (d) = 0, RIDE degenerates to Max-
SIFT. Since Max-SIFT first compares d0 and d28 ( f (0) =
28, see Sect. 4.1.1), we can approximate it as a special case
of RIDE, with q (d) = d0 − d28.

4.2.3 Generalized RIDE

We generalize RIDE to (a) other local descriptors and (b)
more types of reversal invariance.

When RIDE is applied on other dense descriptors, we
can first extract SIFT descriptors on the same patches, then
compute G to estimate the orientation of those patches,
and perform reversal operation if necessary. A generalized
flowchart of RIDE is illustrated in Algorithm 3. The extra
time overheads in this process mainly come from the com-
putation of SIFT, which can be exempted in the case of
using Color-SIFT descriptors. For example, RGB-SIFT is
composed of three SIFT vectors dR, dG and dB, from the
individual red, green and blue channels, therefore we can
compute GR, GG and GB individually, and combine them
with G = 0.30GR + 0.59GG + 0.11GB. For other color
SIFT descriptors, the only difference lies in the linear com-

bination coefficients. By this trick we can perform RIDE on
Color-SIFT descriptors very fast.

Algorithm 3 Generalized RIDE
1: Input: D = {dm}Mm=1.
2: procedure RIDE
3: for m = 1, 2, . . . , M do
4: Reversal: computing dRm ;
5: SIFT: computing dSm if necessary;
6: Orientation: q(dm) = Gx

(
dSm

)
;

7: Selection: d̃m = r(dm), using (2);
8: end for
9: end procedure
10: Output: D̃ = {

d̃m
}M
m=1.

In the case that RIDE is applied to fast binary descrip-
tors for image retrieval, we can obtain the orientation vector
G without computing SIFT. Let us take the BRIEF descrip-
tor (Calonder et al. 2010) as an example. For a descriptor
d, Gx (d) is obtained by accumulating the binary tests. For
each tested pixel pair (p1, p2) with distinct x-coordinates, if
the left pixel has a smaller intensity value, add 1 to Gx (d),
otherwise subtract 1 from Gx (d). If the x-coordinates of p1
and p2 are the same, this pair is ignored. Gy (d) is similarly
computed. We still take q (d) = Gx (d) to quantize left-right
orientation. This idea can also be generalized to other binary
descriptors such as ORB (Rublee et al. 2011), which is based
on BRIEF.

RIDE is also capable of cancelling out a larger family
of reversal operations, including upside-down image rever-
sal, and image rotation by 90◦, 180◦ and 270◦. For this we
need to take more information from the global gradient vec-
tor G = (

Gx ,Gy
)�. Recall that limiting Gx > 0 selects

1 descriptor from 2 candidates, resulting in RIDE-2 (equiv-
alent to RIDE mentioned previously) for left-right reversal
invariance. Similarly, limiting Gx > 0 and Gy > 0 selects 1
from 4 descriptors, obtaining RIDE-4 for both left-right and
upside-down reversal invariance, and limitingGx > Gy > 0
obtainsRIDE-8 for both reversal and rotation invariance.We
do not use RIDE-4 and RIDE-8 in this paper, since upside-
down reversal and heavy rotations are not often observed,
whereas the descriptive power of a descriptor is reduced by
strong constraints. An experimental analysis of this issue can
be found in Appendix 2.

4.3 Numerical Stability Issues

BothMax-SIFT and RIDEmay suffer from numerical stabil-
ity issues, especially in areas with low gradient magnitudes.
When thequantization functionvalueq (d) is close to 0, small
image noise may change the sign of q (d) and, consequently,
the Max-SIFT and/or RIDE descriptors. To quantitatively
analyze the impact of image noise, we first estimate the dis-
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Fig. 5 The distribution of q(·) values on the Bird-200 dataset. For
Max-SIFT, q(d) = d0−d28 (see the texts in Sect. 4.2.2). All the SIFT
descriptors are �2-normalized so that ‖ · ‖2 = 1 (Color figure online)

tribution of q (d) on the Bird-200 dataset (Wah et al. 2011).
According to the histogram in Fig. 5, one may observe that
most SIFT descriptors have relatively small q (·) values using
Max-SIFT. With the descriptors normalized (‖d‖2 = 1 for
all d), the median of |q (d)| values is 0.0556 for Max-SIFT
and 0.1203 forRIDE,which implies that RIDE ismore robust
thanMax-SIFT to small image noise. The reason is that RIDE
summarizes the information of the whole SIFT descriptor,
while Max-SIFT only considers few dimensions.

Consider image classification on theBird-200 dataset.We
add random Gaussian noise with standard deviation 0.1203
(the median of all |q (·)| values) to each of the q (·) value of
RIDE, and find that random noise only causes the classifica-
tion accuracy drop by less than 1%, which is relatively small
compared to the gain of RIDE (6.37%, see Table 2(d)).

Experimental results are very similar on theAircraft-100
dataset (Maji et al. 2013).

4.4 Application to Image Classification

The benefit brought by the Max-SIFT and RIDE to image
classification is straightforward. Consider an image I, and a
set of, say, SIFT descriptors extracted from the image: D =
{d1,d2, . . . ,dM }. When the image is left-right reversed, the
set D becomes: DR = {

dR1 ,dR2 , . . . ,dRM
}
. If the descriptors

are not reversal-invariant, i.e.,D �= DR, the feature represen-
tation produced byD andDR might be totally different.With
Max-SIFT or RIDE, we have d̂ = d̂R or d̃ = d̃R, for any d,
therefore D̂ = D̂R or D̃ = D̃R. Consequently, we generate
the same representation for an image and its reversed copy.

A simple trick applieswhenMax-SIFTorRIDE is adopted
with Spatial Pyramid Matching (Lazebnik et al. 2006).

Note that corresponding descriptors might have different
x-coordinates on an image and its reversed copy, e.g., a
descriptor appearing at the upper-left corner of the origi-
nal image can also be found at the upper-right corner of the
reversed image, resulting in the difference in spatial pool-
ing bin assignment. To cope with, we count the number of
descriptors to be reversed, i.e., those satisfying d̂ �= d or
d̃ �= d. If the number is larger than half of the total num-
ber of descriptors, we left-right reverse the descriptor set by
replacing the x-coordinate of each descriptor with W − x ,
where W is the image width. This is equivalent to predict-
ing the orientation of an image using the orientation of SIFT
descriptors (see Sect. 4.7.1). Despite this, a saferway is to use
symmetric pooling bins. In our experiments (see Sect. 4.6.1),
we use a spatial pyramid with 4 regions (the entire image and
three horizontal stripes).

4.5 Comparison with Previous Work

We first discuss the relationship between RIDE and the
original SIFT descriptor. SIFT aligns the descriptor by rotat-
ing the detected region, so that the dominant orientation is
pointed to the upright direction. After this, we have Gx = 0
(see “The Implementation of SIFT”) thus RIDE degenerates
to Max-SIFT. However, in the ordinary implementation of
dense sampling where descriptors are not aligned before-
hand (Vedaldi and Fulkerson 2010), RIDE serves as a quick
and efficient manner of achieving reversal invariance, which
does not require considering rotation invariance explicitly.

Some recent work achieves reversal invariance with data
augmentation (Wang et al. 2010; Chatfield et al. 2011;
Chai et al. 2013; Paulin et al. 2014). This strategy aims at
increasing the number of training samples for each proto-
type (e.g., left/right orientation, etc.). In Sect. 4.6.2, we will
show that RIDE works better and faster than data augmen-
tation, arguably because RIDE allows local reversal on each
part of the object, which is more flexible than global reversal
(see Sect. 4.7.3).

Although some reversal-invariant descriptors are pro-
posed for descriptor matching (Ma et al. 2010; Guo and Cao
2010; Zhao and Ngo 2013) or object retrieval (Guo and Cao
2010; Zhao and Ngo 2013; Xie et al. 2015b), these descrip-
tors have not been adopted in fine-grained recognition. We
implement several of them, and compare itwith our algorithm
in Table 3. One can observe that Max-SIFT and RIDE sig-
nificantly outperform these competitors in every single case.
We will provide detailed analysis on this issue in Sect. 4.7.2.

RIDE shares the idea of accumulating gradients with
FIND (Guo and Cao 2010), but uses a different way of
computation. FIND partitions the descriptor bins into two
parts (left and right) according to their spatial positions, and
accumulates each gradient intensity without considering its
horizontal (left/right) components. That is to say, all gradi-
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Table 1 Image classification datasets used in our experiments

Dataset Abbreviation # Classes # Images # Training samples / Class

Pet-37 (Parkhi et al. 2012) P-37 37 7390 100

Aircraft-100 (Maji et al. 2013) A-100 100 10000 67

Flower-102 (Nilsback and Zisserman 2008) F-102 102 8189 20

Bird-200 (Wah et al. 2011) B-200 200 11788 30

LandUse-21 (Yang and Newsam 2010) L-37 21 2100 80

Indoor-67 (Quattoni and Torralba 2009) I-67 67 15620 80

SUN-397 (Xiao et al. 2010) S-397 397 108754 50

Caltech256 (Griffin 2007) C-256 257 30607 60

Among them, four datasets are designed for fine-grained object recognition, three for scene classification and one for generic object recognition

ent bins at the same cell contribute equally, although they
are pointed to different directions. RIDE improves this strat-
egy by decomposing each bin into a horizontal component
and a vertical component, and accumulates each component
with their (plus/minus) sign separately into a global gradient
vector G. According to our proof in Appendix 1, our strat-
egy better utilizes the gradient information. In experiments,
RIDE works better than FIND in orientation prediction (see
Sect. 4.7.1), which, we believe, is the main reason of the
accuracy gap in classification (see Table 3).

Finally, we discuss the difference between RIDE and F-
SIFT (Zhao and Ngo 2013). We predict the orientation of
each descriptor based on the description vector, while F-SIFT
normalizes each local patch before extracting the descriptor
on it. In other words, RIDE computes orientation based on
the descriptor, while F-SIFT based on the patch.We point out
that prediction based on the descriptor ismore reliable:we are
dealingwith descriptors, not patches, in the following feature
encoding stage. In experiments, RIDE works better than F-
SIFT in orientation prediction (see Sect. 4.7.1). We believe
this is the main reason of the accuracy gap in classification
(see Table 3). This principle generalizes to the CNN case
(see Sect. 5.2.5). In addition, RIDE works much faster than
F-SIFT (see Sect. 4.6.3).

In summary, although our algorithm shares some ideas
with the previous approach, we achieve better performance
in image classification by generating more discriminative
image-level features. Moreover, our approach enjoys the
advantage of easy implementation and low computational
costs.

4.6 Experiments

4.6.1 Datasets and Settings

We evaluate our algorithm on four publicly available fine-
grained object recognition datasets, three scene classification

datasets and one generic object classification dataset. The
detailed information of the used datasets is summarized in
Table 1.

Basic experimental settings follow the recent proposed
BoF model (Sanchez et al. 2013). An image is scaled, with
the aspect ratio preserved, so that there are 300 pixels on
the larger axis. We only use the region within the bounding
box if it is available. We use VLFeat (Vedaldi and Fulkerson
2010) to extract dense RootSIFT (Arandjelovic and Zisser-
man 2012) descriptors. The spatial stride and window size
of dense sampling are 6 and 12, respectively. On the same
set of patches, LCS, RGB-SIFT and Opponent-SIFT (Sande
et al. 2010) descriptors are also extracted.Max-SIFTorRIDE
is thereafter computed for each type of descriptors. In the
former case, we can only apply Max-SIFT on SIFT-based
descriptors, thus the LCS descriptors remain unchanged.
Whenwe apply RIDE toRootSIFT, we compute RIDE on the
original SIFT, obtained by dimension-wise squaring Root-
SIFT.

The dimensions of SIFT, LCS and color SIFT descriptors
are reduced by PCA to 64, 64 and 128, respectively. We clus-
ter the descriptors with a GMM of 32 components, and use
the improved Fisher vectors (IFV) for feature encoding. A
spatial pyramid with 4 regions (the entire image and three
horizontal stripes) is adopted. Features generated by SIFT
and LCS descriptors are concatenated as the FUSED fea-
ture. The final vectors are square-root normalized followed
by �2 normalized (Lapin et al. 2014), and then fed into Lib-
LINEAR (Fan et al. 2008), a scalable SVM implementation,
with the slacking parameter C = 10. Averaged accuracy by
category is reported on the fixed training/testing split pro-
vided by the authors.

To compare our results with the state-of-the-art classifi-
cation results, strong Fisher vectors are extracted by resizing
the images to 600 pixels in the larger axis, using spa-
tial stride 8, window size 16, and clustering 256 GMM
components.
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Table 2 Classification accuracy (%) of different models

ORIG MAX RIDE AUGM RIDE×2

(a) Pet-37 Results

S 37.92 41.78 42.28 42.24 45.61

L 43.25 – 44.27 45.12 46.83

F 52.06 53.92 54.69 54.67 57.51

R 44.90 46.73 47.35 46.98 49.53

O 46.53 48.39 49.01 48.72 51.19

(b) Aircraft-100 Results

S 53.13 57.72 57.82 57.16 60.14

L 41.82 – 42.86 43.13 44.81

F 57.36 60.49 61.27 60.59 63.62

R 57.89 61.90 63.09 62.48 65.11

O 47.06 52.35 53.12 51.39 55.79

(c) Flower-102 Results

S 53.68 58.12 59.12 58.01 61.09

L 73.47 – 75.30 75.88 77.40

F 76.96 79.59 80.51 79.49 82.14

R 71.52 74.00 74.97 74.18 77.10

O 76.12 78.40 79.68 78.83 81.69

(d) Bird-200 Results

S 25.77 31.59 32.14 31.60 34.07

L 36.18 – 38.50 38.97 40.16

F 38.11 43.48 44.73 43.98 46.38

R 31.36 38.20 39.16 38.79 41.73

O 35.40 41.15 42.18 41.72 44.30

Bold values indicate the highest classification accuracy on each dataset
Evaluated features include SIFT (S), LCS (L), FUSED (F, where SIFT
and LCS features are concatenated), RGB-SIFT (R) and OPP-SIFT (O)
features, while models include using the original descriptors (ORIG),
Max-SIFT (MAX), RIDE (RIDE) or data augmentation (AUGM).
Max-SIFT does not work on LCS, thus the LCS part remains unchanged
in the FUSED feature. RIDE×2 denotes using RIDE with doubled
codebook size. See the texts in Sect. 4.6.2 for details

4.6.2 Image Classification Results

We first report fine-grained object recognition accuracy with
different descriptors in Table 2. Beyond original descriptors,
we implement Max-SIFT, RIDE and data augmentation. By
data augmentation we mean to generate a reversed copy for
each training/testing image, use the augmented set to train
the model, test with both original and reversed samples, and
predict the label with a soft-max function (Paulin et al. 2014).

In Table 2, one can see that both Max-SIFT and RIDE
produces consistent accuracy gain beyond original descrip-
tors (ORIG). Moreover, when we use SIFT or Color-SIFT
descriptors, RIDE also produces higher accuracy than using
data augmentation (AUGM). When the LCS descriptors are
used,RIDEworks a little worse thanAUGM, which is prob-
ably because the orientation of LCS (not a gradient-based
descriptor) is not very well estimated with SIFT gradients.

We shall emphasize that data augmentation requires
almost doubled computational costs compared to RIDE (see
Sect. 4.6.3 for details), since the time/memory complexity of
many classification models is proportional to the number of
training/testing images. To make fair comparison, we double
the codebook size used in RIDE to obtain longer features,
since it is a common knowledge that larger codebooks often
lead to better classification results. Such a model, denoted by
RIDE×2, works better than AUGM in every single case.

We also use strong features and compare Max-SIFT and
RIDE with other reversal-invariant descriptors, namely MI-
SIFT (Ma et al. 2010), FIND (Guo and Cao 2010) and
F-SIFT (Zhao and Ngo 2013). We compute these competi-
tors for each SIFT component in RGB-SIFT, and leave LCS
unchanged in the FUSED feature. Besides descriptor com-
putation, all the other stages are exactly the same. Results
are shown in Table 3. The consistent 3–4% gain verifies that
RIDE makes stable contribution to visual recognition.

It is worth noting that Bird-200 is a little bit different
fromother datasets, since part detection and description often
play important roles in this fine-grained recognition task.
Recently, researchers design complicated part-based recog-
nition algorithms, including Chai et al. (2013), Gavves et al.
(2014), Xie et al. (2013), Zhang et al. (2013), Zhang et al.
(2014b),Zhanget al. (2014a),Li et al. (2015), andZhanget al.
(2016)). We also evaluate RIDE with SIFT on the detected
parts provided by some of these approaches. RIDE boosts the
recognition accuracy of Chai et al. (2013) and Gavves et al.
(2014) from 56.6 to 60.7% and from 65.3 to 67.4%, respec-
tively. In comparison, Gavves et al. (2014) applies data aug-
mentation to boost the accuracy from 65.3 to 67.0%. RIDE
produces better results with only half time/memory con-
sumption.With the parts learned by deep CNNs (Zhang et al.
2014a), the baseline performance is 71.5% with SIFT and
LCS descriptors. With RIDE, we obtain 73.1%, which is
close to the accuracy using deep features (73.9% reported in
the paper).

To reveal that Max-SIFT and RIDE can be applied to
generalized classification, we perform experiments on the
scene classification and generic object recognition tasks. The
FUSED(SIFTwithLCS) features are used, and the results are
summarized in Table 3. It is interesting to see that Max-SIFT
and RIDE also work well to outperform the recent competi-
tors. Thus, although Max-SIFT and RIDE are motivated by
the observation on thefine-grained case, it enjoys good recog-
nition performance on a wide range of image datasets.

4.6.3 Computational Costs

We report the time/memory cost of RIDE with SIFT in
Table 4. The time cost of Max-SIFT is consistently lower
than RIDE, and the memory cost is the same.
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Table 3 Classification accuracy
(%) comparison with some
recent work

P-37 A-100 F-102 B-200 L-21 I-67 S-397 C256

ORIG 60.24 74.61 83.53 47.61 93.64 63.17 48.35 58.77

Max-SIFT 62.80 77.54 85.82 49.93 94.13 64.12 49.39 59.21

RIDE 63.49 78.92 86.45 50.81 94.71 64.93 50.12 60.25

MI-SIFT (Ma et al. 2010) 58.91 72.26 81.06 45.59 92.86 61.49 46.51 55.39

FIND (Guo and Cao 2010) 59.63 74.06 82.91 47.49 93.14 62.91 47.87 56.72

F-SIFT (Zhao and Ngo 2013) 61.06 75.95 84.72 48.21 93.64 63.36 48.61 58.57

Angelova and Zhu (2013) 54.30 – 80.66 – – – – –

Maji et al. (2013) – 48.69 – – – – – –

Murray and Perronnin (2014) 56.8 – 84.6 33.3 – – – –

Paulin et al. (2014) – – – 45.2 – – – –

Pu et al. (2014) – – – 44.2 – – – –

Wang et al. (2014) 59.29 – 75.26 – – – – –

Juneja et al. (2013) – – – – – 63.10 – –

Kobayashi (2014) – – – – 92.8 63.4 46.1 57.4

Xie et al. (2014b) – – – – – 63.48 45.91 –

Lapin et al. (2014) – – – – – – 49.5 –

Bold values indicate the highest classification accuracy on each dataset
We use RGB-SIFT on the Aircraft-100 dataset, and the FUSED (SIFT with LCS) features on other datasets.
We implement MI-SIFT (Ma et al. 2010), FIND (Guo and Cao 2010) and F-SIFT (Zhao and Ngo 2013) by
ourselves

Table 4 Time/memory cost in each step of the BoF model

ORIG RIDE AUGM RIDE×2

Descriptor 2.27 h 2.29 h 2.30 h 2.29 h

Codebook 0.13 h 0.13 h 0.13 h 0.27 h

Encoding 0.78 h 0.78 h 1.56 h 1.28 h

Recognition 1.21 h 1.21 h 2.46 h 2.42 h

(RAM cost) 3.71 GB 3.71 GB 7.52 GB 7.51 GB

All the data are recorded with SIFT descriptors with 32 GMM compo-
nents on the Bird-200 dataset (Wah et al. 2011)

Since the only extra computation of RIDE comes from
gradient accumulation and descriptor permutation, the addi-
tional time cost of RIDE is merely about 1% of SIFT
computation. This is significantly lower than some previ-
ous methods such as F-SIFT (about 30% extra time Zhao
and Ngo 2013). RIDE does not require any extra memory
storage. However, if the dataset is augmented with left-right
image reversal, one needs to compute and store two instances
for each image, descriptor and feature vector, resulting in
almost doubled time and memory overheads, which is com-
parable with using a double-sized codebook, whereas the
latter produces much better classification results.

4.7 Discussion

4.7.1 Object Orientation Prediction

As an diagnostic experiment, we predict the left/right ori-
entation of an image based on the orientation quantization

function q (·). We use theAircraft-100 dataset, in which the
orientation (left or right) of each aircraft is manually labeled.
We adopt the ground-truth bounding box to crop the image,
so that the objects are better aligned. After cropping, all the
images are resized so that the longer axis has 600 pixels,
and dense SIFT descriptors are extracted using the VLFeat
library (Vedaldi and Fulkerson 2010).

We use 2/3 images (approximately 67 per category) for
training. Without loss of generality, we assume that all the
training images are oriented to right. For each testing image,
we compute its orientation score by accumulating clues
from each descriptor. Suppose the width and height of the
testing image areW and H , then a descriptor on the position
(x, y) has the “relative position” (x/W, y/H). The descrip-
tor starts from an evidence 0. On each training image, we
seek for the nearest descriptor measured by the �2 distance
of relative positions, and compare their orientation quanti-
zation function values: if the values are of the same sign,
add 1 to the evidence, otherwise subtract 1 from the evi-
dence. Each descriptor contributes the sign of the evidence
(in {+1,−1, 0}) to the orientation score of the entire image.
After all the descriptors are processed, if the total score is
positive, then this testing image is oriented to right; if it is
negative, to left; if it is 0, a random guess is taken (this rarely
happens).

One can note that different results are produced with
different orientation quantization functions. Using RIDE
(q (d) = Gx (d)), the prediction accuracy is 65.45%,
whereas using Max-SIFT (q (d) = d0−d28, see Sect. 4.2.2),
the accuracy drops to 54.69%, barely above the chance level
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TARGET Image TEST Image

TEST: Local Reversal TEST: Global Reversal

TARGET Image TEST Image

TEST: Local Reversal TEST: Global Reversal

Fig. 6 Global versus local image reversal. Local reversal (with manually labeled regions in the yellow boxes) allows more flexible image repre-
sentation, and produces smaller feature distances between the test and target images (Color figure online)

(50%).We also implement FIND (Guo andCao 2010) (ignor-
ing gradient components) and F-SIFT (Zhao and Ngo 2013)
(computing on raw pixels) for orientation prediction, and
the accuracy is 56.19 and 57.41%, respectively. In summary,
RIDE predicts the orientation of a local patch more accu-
rately. Aswe have analyzed in Sect. 3, this significantly helps
image classification.

4.7.2 Classification Versus Retrieval

We discuss the difference between image classification and
object retrieval, followed by the reason that some descriptors
designed for image retrieval (Ma et al. 2010) fail to achieve
good performance in image classification (see Table 3).

To retrieve a partial-duplicate or near-duplicate object
from a set of candidate images, the most important thing is
to find a sufficient number of local feature matches. As hand-
crafted descriptors such as SIFT are often sensitive to image
transformation (e.g., reversal, rotation, etc.), a good strategy
is to cancel out these possible variations by pooling over the
corresponding dimensions of each descriptor. For instance,
MI-SIFT (Ma et al. 2010) averages the values of each four-
bin group to cancel out image reversal. Although this may
result in precision drop, i.e., introducing some false matches,
it is still possible to filter them out with post-processing such
as spatial verification.

As to image classification, especially fine-grained object
recognition, things are different: the most important task is to
generate some discriminative image features to distinguish
one class from others. Therefore, it is often unreasonable
to destroy the structure of a local descriptor for the pur-
pose of invariance. To this point, we propose to maximally
preserve the descriptive power of local features and prevent
dimension-wise operations.

4.7.3 Global Reversal Versus Local Reversal

We point out that RIDE benefits image representation in the
perspective of regional feature matching.

An essential difference between RIDE and data aug-
mentation comes from the comparison of local and global
image reversal. By local reversal we mean that RIDE can
decide whether to reverse every single descriptor individ-
ually, while data augmentation only allows to choose one
image from two candidates, i.e., either original or globally
reversed. Figure 6 compares both strategies in an intuitive
manner. In these cases, we aim at matching a target image
with a possibly reversed test image. With global reversal,
we have only two choices and the flexibility of our model
is limited. With local reversal, however, it is possible to
reverse smaller regions such as the turned head of the bird
or cat. By this we can find larger numbers of true feature
matches and obtain more similar image representation, i.e.,
smaller feature distance. Therefore, it is not difficult to under-
stand the reason why RIDE works even better than data
augmentation.

4.8 Summary

In this section, we explore reversal invariance in the context
of the BoF model. We propose the Max-SIFT descriptor
and theRIDE (Reversal-Invariant Descriptor Enhancement)
algorithm which bring reversal invariance to local descrip-
tors. Our idea is inspired by the observation that most
handcrafted descriptors are not reversal-invariant, whereas
many fine-grained datasets contain objects with different
left/right orientations. Max-SIFT and RIDE cancel out the
impact of image/object reversal by estimating the orienta-
tion of each descriptor, and then forcing all the descrip-
tors to have the same orientation. Experiments reveal that
both of them significantly improve the accuracy of fine-
grained object recognition and scene classification with very
few computational costs. Both Max-SIFT and RIDE are
robust to small image noise. Compared with data augmenta-
tion, RIDE produces better results with lower time/memory
consumptions.
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5 Reversal Invariance for CNN

In this section, we generalize the above ideas from BoF to
CNN. We first present a simple strategy to improve deep
features, which demonstrates the importance of reversal
invariance in CNN. Motivated by which, we propose a new
convolution operation so that we can train reversal-invariant
deep networks directly.

5.1 Reversal-Invariant Deep Features (RI-Deep)

5.1.1 Average-Deep and Max-Deep

We start with observing the behavior of deep features,
which are the neuron responses of a testing image extracted
from a pre-trained CNN model. In general, if an image
is left-right reversed, the neuron responses on each layer
will change accordingly, because the convolution opera-
tion is not reversal-invariant. In most deep CNN mod-
els (Krizhevsky et al. 2012; Szegedy et al. 2015; Simonyan
and Zisserman 2015), data augmentation with image reversal
is widely adopted on both the training and testing stages. In
training, each sample is reversed with a probability of 50%,
so that the network can learn from objects with different ori-
entations. In testing, neuron responses on both the original
and reversed versions are computed and averaged. We shall
verify in the later experiments that data augmentation mod-
ules in training and testing are complementary to each other.

Let us denote an image as I and its left-right reversed
version as IR. Given a deep CNN model M and a specified
layer number l, the feature vector extracted on the l-th layer
is fl (I;M) ∈ R

Kl , where Kl is the number of channels
(convolution kernels) on that layer. With the reversed image,
we can also compute the reversed deep feature on the same
layer, i.e., fl

(
IR;M)

. Most often, fl (I;M) �= fl
(
IR;M)

.
Inspired by Sect. 4.1.1, we seek for a deep feature trans-

formation function r (·), which satisfies r (I) = r
(
IR
)
for

any image I. Here, we choose two simple symmetric opera-
tions, named Average-Deep and Max-Deep, respectively:

rAVGl (I) = 1

2

[
fl (I;M) + fl

(
IR;M

)]
, (3)

rMAX
l (I) = max

{
fl (I;M) , fl

(
IR;M

)}
, (4)

where max {·, ·} denotes the element-wise maximization of
two vectors. This strategy is different from that used in
Sect. 4.1.2 which chooses the one with the larger sequen-
tial lexicographic order. Let us take a little space to illustrate
the difference between SIFT descriptors and deep features.
SIFT is a type of handcrafted descriptor, each dimension in it
corresponds to the gradient intensity on a specific direction.
If we simply take the dimension-wise average or maximum

of a SIFT and its reversed version (like MI-SIFT (Ma et al.
2010)), the inner structure as well as the relationship between
corresponding dimensions may be damaged, leading to sig-
nificant accuracy drop. In a deep feature vector, however,
each dimension corresponds to the extent that a visual con-
cept or attribute arises, therefore it is reasonable to take
dimension-wise operation to consider the visual attributes
contained in both the original and reversed images.

We point out that both Average-Deep and Max-Deep are
similar to the testing strategy used in some state-of-the-art
CNNs (Krizhevsky et al. 2012; Simonyan and Zisserman
2015; Szegedy et al. 2015). In which, using visual clues
in both the original and reversed testing images produces
around 0.2–0.5% accuracy gain. We shall verify that this
strategy is also useful in transferring features for image clas-
sification.

Regarding computational costs, both Average-Deep and
Max-Deep require doubled time complexity on the feature
extraction stage, but they do not need extra time or mem-
ory on the online testing stage. Considering that the feature
extraction is performed only once, the extra cost is thus rea-
sonable.

5.1.2 Image Classification Experiments

We evaluate the models on all the eight datasets introduced
in Sect. 4.6. We use the AlexNet and the VGGNet (both
the 16- and 19-layer models, provided by the MatCon-
vNet library (Vedaldi and Lenc 2014)) as the pre-trained
deep networks. To demonstrate the importance of reversal
invariance, we also train another version of the AlexNet, in
which we do not use image reversal as data augmentation in
the training process. The top-5 recognition error rate on the
ILSVRC2012 validation set increases by about 2% (19.9 vs.
21.9%).

Most often, it is reasonable to pre-process the testing
image according to the way of network training. For the
AlexNet, we simply resize each image to 227 × 227 pix-
els and feed it into the network. In the original testing
process (Krizhevsky et al. 2012), the image is resized to
256 × 256 and five sub-images are cropped at different
positions and the average response is computed. While this
strategy improves the accuracy consistently, we do not use
it so that the feature extraction stage is accelerated. For the
VGGNet-16 and VGGNet-19, we maximally preserve the
aspect ratio of the input image, constrain thewidth and height
divisible by 32 (the down-sampling rate), and the number
of pixels is approximately 5122. Such a strategy improves
the performance of deep features significantly, compared to
resizing all images to 224 × 224 pixels. After the neuron
responses are computed, we extract the features from each
layer by average-pooling over all spatial positions. Through-
out the rest part, we use the features extracted from the fc-6
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Table 5 Classification accuracy
(%) without or with
reversal-invariant deep features

Model C256 L-21 I-67 S-397 P-37 A-100 F-102 B-200

AlexNet (w/o AUGM), ORIG 67.69 93.81 53.91 41.01 76.95 44.68 84.56 43.43

AlexNet (w/o AUGM), AVG 70.39 95.74 58.10 44.47 79.60 52.74 87.17 47.98

AlexNet (w/o AUGM), MAX 70.17 95.64 57.77 44.19 79.40 53.06 86.88 47.82

AlexNet (w/ AUGM), ORIG 70.48 95.07 57.78 44.77 80.85 49.34 87.27 47.17

AlexNet (w/ AUGM), AVG 71.75 95.55 59.76 46.42 81.79 53.89 88.34 49.28

AlexNet (w/ AUGM), MAX 71.57 95.50 59.45 46.24 81.55 53.86 88.26 49.15

VGGNet-16 (w/ AUGM), ORIG 82.69 95.71 75.78 60.43 93.09 67.18 93.69 71.62

VGGNet-16 (w/ AUGM), AVG 83.09 96.02 76.06 61.50 93.31 68.20 94.01 72.66

VGGNet-16 (w/ AUGM), MAX 83.12 95.83 75.93 61.39 93.25 68.37 93.97 72.73

VGGNet-19 (w/ AUGM), ORIG 83.51 95.10 75.49 61.30 93.10 68.20 93.57 71.70

VGGNet-19 (w/ AUGM), AVG 83.90 95.07 75.93 62.40 93.17 69.31 93.83 72.55

VGGNet-19 (w/ AUGM), MAX 83.90 94.98 75.83 62.25 93.12 69.44 93.84 72.59

SIFT+LCS, original 58.77 93.64 63.17 48.35 60.24 74.61 83.53 47.61

Max-SIFT+LCS 59.21 94.13 64.12 49.39 62.80 77.54 85.82 49.93

SIFT+LCS, w/ RIDE 60.25 94.71 64.93 50.12 63.49 78.92 86.45 50.81

Chatfield et al. (2014) 77.61 – – – – – – –

Donahue et al. (2014) – – – 40.94 – – – 64.96

Razavian et al. (2014) – – 69.0 – – – 86.8 61.8

Zeiler et al. (2014) 74.2 – – – – – – –

Zhou et al. (2014) – – 69.0 54.3 – – – –

Krause et al. (2015) – – – – – – – 82.8

Lin et al. (2015) – – – – – – – 80.26

Qian et al. (2015) – – – – 81.18 – 89.45 67.86

Xie et al. (2015a) – 94.71 70.13 54.87 90.03 – 86.82 62.02

We also list the results of the BoF model (please refer to Table 3) and several recent work using deep
features for comparison. All the results are obtained with the fc-6 features (4096D) after ReLU activation

layer, activated by ReLU (Krizhevsky et al. 2012). These fea-
ture vectors are �2-normalized and sent to LIBLINEAR (Fan
et al. 2008), a scalable SVM implementation, with the slack-
ing parameter C = 10. Averaged accuracy by category is
reported. Results are summarized in Table 5. Each number
is the mean of 10 random training/testing splits.

5.1.3 Discussion

First, it is obvious that feature quality, reflected by clas-
sification accuracy, is improved with data augmentation
techniques, either on the training stage (reversing each train-
ing sample with the probability of 50%) or on the testing
stage (computing the average or maximal neuron responses
for each image and its reversed copy), which reveals the
importance or reversal invariance in training CNN models
and transferring CNN features. In most cases, Average-Deep
works slightly better than Max-Deep.

Let us take the results produced by the AlexNet as an
example. On the one hand, when the network is trained
with both original and reversed samples, the validation
accuracy on ILSVRC2012 is improved by about 2%, and,

consequently, we obtain consistent accuracy gain using the
transferred features for recognition. On the other hand, both
Average-Deep and Max-Deep boost the classification accu-
racy, sometimes evenby a largemargin, e.g.,more than8%on
the Aircraft-100 dataset. Even when the network is trained
with data augmentation, Average-Deep and Max-Deep still
improve the classification rate consistently, although the gain
becomes relatively small (approximately 2%on theAircraft-
100 dataset) due to the marginal effect. Considering that the
baseline is already high in most cases and that both Average-
Deep and Max-Deep are extremely easy to implement, the
accuracy gain is significant yet effortless to get.

To comparewith the BoFmodel with handcrafted descrip-
tors, we also copy a part of Table 3 here. We can see that,
in most cases, deep features outperform BoF significantly,
except in the Aircraft-100 dataset: this set contains 100
aircraft models which are rigid (suitable for handcrafted
descriptors) and do not appear in the pre-training set (the
ILSVRC2012 dataset) of the deep networks. The BoFmodel
obtains higher accuracy only in this dataset. In contrast, in the
Pet-37 dataset, all the objects (cats or dogs) are deformable
and the pre-training set contains a lot of these concepts, there-
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fore the performance of deep features is dominant to that of
theBoFmodel. Finally,weobserve that the reported accuracy
on the Bird-200 dataset is inferior to some recent publica-
tions, mainly because we do not use part-based models (see
the related contents in Sect. 4.6.2).

It is instructive to note that the accuracy gain brought by
reversal invariance differs from case to case. For example,
on the Aircraft-100 and Bird-200 datasets, the accuracy
gain is impressive (>1% using VGGNet-19), however in
the LandUse-21 and Pet-37 datasets, it is less significant
(<0.2%). The reason lies in the intrinsic property of the
datasets and their relationship with the pre-training data. The
orientationof anaircraftor abird ismore significant, and also
more meaningful in visual recognition, than that of a scene
captured from the sky. Moreover, all the above networks are
pre-trained with the ILSVRC2012 dataset, which contains a
large number of cat and dog images (but no aircraft images),
therefore it is easier to achieve reversal invariance when the
testing image contains a related visual concept.

The above experiments suggest that designing reversal
invariance also helps to improve the quality of deep features.
In what follows, we will design intrinsic reversal-invariant
convolution modules, i.e., Average-Conv and Max-Conv,
which lead to a more direct way of generating reversal-
invariant deep features. These two strategies will be com-
pared in Sect. 5.3.

5.2 Reversal-Invariant Convolution (RI-Conv)

5.2.1 Average-Conv and Max-Conv

As an alternative solution to post-processing deep features
towards reversal invariance, we show that directly training a
reversal-invariant deep CNN is possible and more efficient.
Here, we say a CNN model is reversal-invariant if it pro-
duces symmetric neural responses on each pair of symmetric
images, i.e., for an arbitrary image I, if we take I and IR as the
input, the neuron responses on each layer of the pre-trained
networkM, i.e., fl (I;M) and fl

(
IR;M)

, are symmetric to
each other: fRl (I;M) = fl

(
IR;M)

. In a reversal-invariant
network, when we extract features on a fully-connected layer
(e.g., fc-6 in the AlexNet), the original and reversed outputs
are exactly the same since the spatial resolution is 1 × 1. If
the features are extracted on an earlier layer (e.g., conv-5 in
theAlexNet), we can also achieve reversal invariance by per-
forming average-pooling or max-pooling over the responses
at all spatial locations, similar to the strategy used in Sect. 5.1
and some previous publications (He et al. 2015).

The key to constructing a reversal-invariant CNN model
is to guarantee that all the network layers are performing
symmetric operations. Among the frequently used network
operations (e.g., convolution, pooling, normalization, non-
linear activation, etc.), only convolution is non-symmetric,

i.e., a local patch and its reversed copymay produce different
convolution outputs. We aim at designing a new reversal-
invariant convolution operation to replace the original one.

Mathematically, let l be the index of a convolution layer
with Kl convolution kernels, and fl−1

.= fl−1 (I;M) is the
input of the l-th layer. θ l ∈ R

Wl×Hl×Kl and bl ∈ R

Kl are the
weighting and bias parameters, respectively. The convolution
operation takes a patch with the same spatial scale as the ker-
nels, computes its inner-product with each kernel, and adds
the bias to the result. For the k-th kernel, k = 1, 2, . . . , Kl ,
we have:

f (a,b,k)
l (I;M) =

〈
p(a,b)
l−1 , θ

(k)
l

〉
+ b(k)

l , (5)

Here, f (a,b,k)
l denotes the unit at the spatial position (a, b),

and convoluted by the k-th kernel, on the l-th layer, and p(a,b)
l−1

denotes the related data patch on the previous layer. Note that
p(a,b)
l−1 and θ

(k)
l are of the same dimension. 〈·, ·〉 denotes the

inner-product operation.
Inspired by the reversal-invariant deep features, reversal

invariance is achieved if we perform a symmetric opera-
tion on the neuron responses from a patch and its reversed
copy. Again, we take the element-wise average and maximal
responses, leading to the Average-Conv and theMax-Conv
formulations:

r (a,b,k)
l,AVG (I;M)

= 1

2

[〈
p(a,b)
l−1 , θ

(k)
l

〉
+
〈
p(a,b),R
l−1 , θ

(k)
l

〉]
+ b(k)

l

=
〈
1

2

[
p(a,b)
l−1 + p(a,b),R

l−1

]
, θ

(k)
l

〉
+ b(k)

l , (6)

r (a,b,k)
l,MAX (I;M)

= max
{〈
p(a,b)
l−1 , θ

(k)
l

〉
,
〈
p(a,b),R
l−1 , θ

(k)
l

〉}
+ b(k)

l . (7)

Since Average-Conv and Max-Conv simply perform the
corresponding pooling operation on two convoluted data
blobs, it is straightforward to derive the formula of back-
propagation. In the case of Average-Conv, we can accelerate
both forward-propagation and back-propagation by modify-
ing the input data (the original input p(a,b)

l−1 is replaced by

the average of p(a,b)
l−1 and p(a,b),R

l−1 ), thus the time-consuming
convolution process is performed only once. In the case of
Max-Conv, we need to create a mask blob to store the index
of forward-propagated units, as in max-pooling layers.

In what follows, we will plug the reversal-invariant con-
volution modules into the conventional CNN models. We
name a CNN model RI-CNN if all the convolution lay-
ers in it, including the fully-connected layers, are made
reversal-invariant. We start with discussing its property of
reversal invariance, and the cooperation with data augmen-
tation strategies.
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5.2.2 Reversal Invariance and Data Augmentation

It is obvious that both Average-Conv and Max-Conv are
symmetric operations. We prove that an RI-CNN is reversal-
invariant, i.e., the feature vectors extracted from an image
and its reversed copy are identical.

Weusemathematical induction,with the starting point that
an image and its reversed copy are symmetric to each other,
i.e., fR0 (I;M) = f0

(
IR;M)

. Now, given that fRl−1 (I;M) =
fl−1

(
IR;M)

, we derive that fRl (I;M) = fl
(
IR;M)

, if both
of them are computed with a reversal-invariant convolution
operation on the l-th layer. For this, we assume that when
padding (increasing data width/height with 0-valued stripes)
is used, the left and right padding width must be the same,
i.e., the geometric symmetry is guaranteed.

Consider a patch p(a,b)
l−1 (I;M). According to symmetry,

we have p(a,b),R
l−1 (I;M) = p(Wl−1−a−1,b)

l−1

(
IR;M)

, where
(Wl−1 − a − 1, b) is the left-right symmetric position to
(a, b). These two patches are fed into the k-th convolu-
tion kernel θk , and the outputs are f (a,b,k)

l (I;M) and

f (Wl−1−a−1,b,k)
l

(
IR;M)

. These two scalars equal to each
other since both Average-Conv and Max-Conv are symmet-
ric, thus the neuron responses on the l-th layer are also
symmetric: fRl (I;M) = fl

(
IR;M)

. This finishes the induc-
tion, i.e., the neuron responses of a pair of symmetric inputs
are symmetric.

Wepoint out that such agoodproperty in feature extraction
can be a significant drawback in the network training process,
since an RI-CNN model suffers from the difficulty to coop-
erate with “reversal data augmentation”. Here, by reversal
data augmentation we mean to reverse each training sample
with the probability of 50%. As an RI-CNN model gener-
ates exactly the same (symmetric) neuron responses for an
image and its reversed copy, these two training samples actu-
ally produce the same gradients with respect to the network
parameters on each layer. Consequently, reversing a training
image cannot provide any “new” information to the network
training process. Since using reversal-invariant convolution
operations increases the capacity of the CNN model (see
Sect. 5.2.5), the decrease of training data may cause over-
fitting, which harms the generalization ability of the model.

To deal with, we intentionally damage the reversal-
invariant property of the network in the training process. For
this, we crop the training image into a smaller size, so that
the geometric symmetry does not hold any more. Taking the
AlexNet as an example. The original input image size is
227×227, in which geometric symmetry holds on each con-
volutional/pooling layer. If the size becomes S′×S′ where S′
is a little smaller than 227, then in some layers, the padding
margin on the left side is not the same as that on the right
side. By the way, S′ shall be at least 199, so that the input of
the fc-6 layer still has a spatial resolution of 6×6. In practice,

we simply use S′ = 199, so that we can generate as many
training images as possible. As we shall see in Sect. 5.2.4,
this strategy also improves the baseline accuracy slightly.

5.2.3 CIFAR Experiments

The CIFAR10 and CIFAR100 datasets (Krizhevsky and
Hinton 2009) are subsets of the 80 million tiny images data-
base (Torralba et al. 2008). Both of them have 50,000 training
samples and 10,000 testing samples, each of which is a
32 × 32 color image, uniformly distributed among all the
categories (they have 10 and 100 categories, respectively). It
is a popular dataset for training relatively small-scale neural
networks for simple recognition tasks.

We use a modified version of the LeNet (LeCun et al.
1990). A 32×32×3 image is passed through three units con-
sisting of convolution, ReLU and max-pooling operations.
Using abbreviation, the network configuration forCIFAR10
can be written as:

[C5(S1P2)@32-MP3(S2)]-[C5(S1P2)@32-MP3
(S2)]-[C5(S1P2)@64-MP3(S2)]-FC10.
Here, C5(S1P2)means a convolutional layer with a kernel
size 5, a spatial stride 1 and a padding width 2; MP3(S2)
refers to amax-pooling layer with a kernel size 5 and a spatial
stride 2, and FC10 indicates a fully-connected layer with 10
outputs. InCIFAR100, we replace FC10 as FC100 in order
to categorize 100 classes. A 2-pixel wide padding is added
to each convolution operation so that the width and height of
the data remain unchanged.We do not producemultiple sizes
of input images, since the LeNet is not symmetric itself: on
each pooling layer, the left paddingmargin is 0while the right
margin is 1. We apply 120 training epochs with the learning
rate 10−3, followed by 20 epochs with the learning rate 10−4,
and another 10 epochs with the learning rate 10−5.

We train six different models individually, i.e., training a
network with the original version of convolution, Average-
Conv or Max-Conv (three choices), and using data aug-
mentation (probabilistic training image reversal) or not (two
choices). We name these models as LeNet, LeNet-AUGM
(“AUGM” for augmentation), LeNet-AVG, LeNet-AVG-
AUGM, LeNet-MAX and LeNet-MAX-AUGM, respec-
tively. For instance, LeNet-MAX indicates the network with
Max-Convbutwithout data augmentation.Note that reversal-
invariant convolution also applies to the fully-connected
layer. To reveal the statistics significance, we train 5 indepen-
dent models in each case, and report the average accuracy.

Results are summarized in Table 6. One can observe
similar phenomena on both datasets. First, Average-Conv
causes dramatic accuracy drop (we will analyze the rea-
son in Sect. 5.2.5). On the other side, data augmentation
and Max-Conv improve the recognition accuracy consis-
tently. In the CIFAR10 dataset, both data augmentation and
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Table 6 CIFAR classification error rate (%) with respect to different
versions of LeNet

w/o AUGM w/ AUGM

CIFAR10

LeNet 18.11 ± 0.20 16.99 ± 0.22

LeNet-AVG 21.01 ± 0.35 20.99 ± 0.26

LeNet-MAX 16.93 ± 0.18 16.64 ± 0.17

CIFAR100

LeNet 46.08 ± 0.26 44.55 ± 0.10

LeNet-AVG 47.79 ± 0.41 47.55 ± 0.31

LeNet-MAX 43.90 ± 0.19 43.65 ± 0.16

Bold values indicate the lowest recognition error

Table 7 CIFAR classification error rate (%) with respect to different
versions of BigNet

w/o AUGM w/ AUGM

CIFAR10

BigNet 10.29 ± 0.29 7.80 ± 0.18

BigNet-AVG 12.13 ± 0.19 9.53 ± 0.19

BigNet-MAX 7.63 ± 0.12 7.49 ± 0.23

CIFAR100

BigNet 34.51 ± 0.17 31.03 ± 0.24

BigNet-AVG 36.74 ± 0.19 32.61 ± 0.30

BigNet-MAX 30.92 ± 0.32 30.76 ± 0.24

Bold values indicate the lowest recognition error

Max-Conv boost the accuracy by about 1%, and these two
strategies cooperate with each other to outperform the base-
line by 1.5%. In the CIFAR100 dataset, Max-Conv alone
contributes a more-than-2% accuracy gain, which is higher
than the 1.5% gain by data augmentation, and the combina-
tion gives a nearly 2.5%gain. As a last note, the improvement
on CIFAR100 is much larger than that on CIFAR10, which
indicates thatCIFAR100 is a more challenging dataset (with
more categories), and that Max-Conv increases the network
capacity to benefit the recognition task.

To compare with the state-of-the-art, we also evaluate our
algorithm on a larger network named BigNet. It is a 10-layer
network (Nagadomi 2014) which resembles the VGGNet in
using small convolutional kernels. We inherit all the settings
from the original author, and report the accuracy produced
by six different versions as above. Results summarized in
Table 7 deliver the same conclusion as using the small net-
work (LeNet).

We also put our result in the CIFAR datasets in the con-
text of some recent publications in this dataset. Results are
summarized in Table 8.

Table 8 Comparison with some recent work in CIFAR classification
error rates (%)

CIFAR10 CIFAR100

Goodfellow et al. (2013) 9.38 38.57

Lin et al. (2014a) 8.81 35.68

Lee et al. (2015) 7.97 34.57

Liang and Hu (2015) 7.09 31.75

Lee et al. (2016) 6.05 32.37

LeNet-MAX 16.64 43.65

BigNet-MAX 7.49 30.76

Bold values indicate the lowest recognition error

Table 9 ILSVRC2012 classification error rate (%) with respect to dif-
ferent versions of AlexNet

w/o AUGM w/ AUGM

ILSVRC2012, top-1

AlexNet 43.05 ± 0.19 42.52 ± 0.17

AlexNet-MAX 42.16 ± 0.05 42.10 ± 0.07

ILSVRC2012, top-5

AlexNet 20.62 ± 0.08 19.52 ± 0.05

AlexNet-MAX 19.42 ± 0.03 19.12 ± 0.07

Bold values indicate the lowest recognition error

5.2.4 ILSVRC2012 Classification Experiments

We also evaluate our model on the ILSVRC2012 classi-
fication dataset (Russakovsky et al. 2015), a subset of the
ImageNet database (Deng et al. 2009) which contains 1000
object categories. The training set, validation set and testing
set contain 1.3 M, 50 K and 150 K images, respectively. We
use the AlexNet (provided by the CAFFE library (Jia et al.
2014), sometimes referred to as the CaffeNet). The input
image is of size 199×199, randomly cropped from the orig-
inal 256×256 image (see Sect. 5.2.2). TheAlexNet structure
is abbreviated as:

[C11(S4)@96-MP3(S2)-LRN]-[C5(S1P2)@256-
MP3(S2)-LRN]-[C3(S1P1)@384]-[C3(S1P1)
@384]-[C3(S1P1)@256-MP3(S2)]-FC4096-D0.
5-FC4096-D0.5-FC1000.
Here, LRN means local response normalization
(Krizhevsky et al. 2012) and D0.5 means Dropout with a
drop ratio 0.5. Following the setting of CAFFE, a total of
450,000 mini-batches (approximately 90 epochs) are used
for training, each of which has 256 image samples, with the
initial learning rate 0.01, momentum 0.9 and weight decay
0.0005. The learning rate is decreased to 1/10 after every
100,000 mini-batches.

We individually train four models, i.e., using original con-
volution orMax-Conv, using data augmentation or not. Simi-
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larly,wename these variations asAlexNet,AlexNet-AUGM,
AlexNet-MAX and AlexNet-MAX-AUGM, respectively.
Considering the large computational costs, we only train
two individual networks for each setting. We do not train
models based on Average-Conv according to the dramatic
accuracy drop in CIFAR experiments. Note that Max-Conv
also applies to the fully-connected layers.

Result are summarized in Table 9. As we have slightly
modified the data augmentation strategy, the baseline perfor-
mance (80.48% top-5 accuracy) is slightly better than that
reported using the standard setting (approximately 80.1%
top-5 accuracy 1). With Max-Conv, the top-5 accuracy is
boosted to 80.88%, which show that Max-Conv and data
augmentation cooperate to improve the recognition perfor-
mance. We emphasize that the 0.40% accuracy gain is not
small, given that the network structure is unchanged. Mean-
while, the conclusions drawn in CIFAR experiments also
hold in this large-scale image recognition task.

5.2.5 Discussion

The success of data augmentation and Max-Conv implies
that it is instructive to force the network to learn reversal
invariance by constructing corresponding specific structures.
This part provides somediscussion basedon the experimental
results.

We first provide another perspective on the behavior of
reversal-invariant convolution. Let us consider a convolution
layer (the l-th layer), in which we compute the inner product
of a patch p(a,b)

l−1 (probably together its reversed copy) and
each of the Kl convolution kernels θk , k = 1, 2, . . . , Kl .
Since inner production measures the similarity between
p(a,b)
l−1 and θk , the patches with similar appearance to θk will

get a significant neuron response. In this situation, θ k behaves
like a codeword and Kl is the codebook size. Meanwhile,
we note that image patterns are often left-right asymmetric,
e.g., a slash may have either a positive or a negative angle.
Without reversal-invariant convolution, we need two differ-
ent codewords to encode a visual pattern and its reversed
version, which significantly decreases the capacity of the
limited codebook size (Kl ), and, consequently, the capac-
ity of the network. Reversal-invariant convolution brings the
opportunity for each local patch to be compared with a code-
word and its reversed copy, so that equivalently, we need
only one codeword to store a visual pattern and its reversed
version.

Now, it is easy to see thedifferencebetweenAverage-Conv
andMax-Conv. Both of them compute the similarity between
each codeword and each original/reversed local patch. After
that, Average-Conv considers the average response andMax-

1 https://github.com/BVLC/caffe/wiki/
Models-accuracy-on-ImageNet-2012-val

Conv gets the larger response. Thus, in the context of
average-convolution, a local patch can get a high response
if it is similar to both the codeword itself and its reversed
copy, which is not reasonable since image patterns are often
left-right asymmetric. Another way of understanding is that
Eqn (6) is equivalent to averaging each kernel and its reversed
copy and then convolutingwith the patch, thusAverage-Conv
constrains all the input patches to be left-right symmetric.
In opposite, Max-Conv animates those local patches which
are similar to either the original or reversed codeword, thus
contributes to improve the discriminative power and invari-
ance of the deep feature. Consequently, in the experiments,
Average-Conv causes dramatic accuracy drop, while Max-
Conv boosts the performance significantly.

To take a closer observation on the network training with
data augmentation and/or reversal-invariant convolution, we
plot the testing error rate as well as the training/testing loss
with respect to the number of training epochs. Note that
both strategies augment the training data: data augmenta-
tion implicitly increases the number of training samples,
meanwhile reversal-invariance convolutionmakes it possible
to “see” more variations of local patches. From the results
shown in Fig. 7, we can see that using data augmentation
slows down the network training since it introduce regular-
ization to the training process. However, with Max-Conv,
network training converges faster since the network capacity
is increased. These two strategies cooperate with each other
to make full use of the increased model capacity, meanwhile
prevent over-fitting.

Another strategy for reversal invariance in CNN is to pre-
compute the orientation of each patch before convolution,
e.g., using the method presented in Zhao and Ngo (2013)
for patch normalization. We point out that RI-Conv is more
effective thanZhao andNgo (2013). RI-Conv always chooses
the patch orientationwhich generates the higher score in tem-
plate matching, while Zhao and Ngo (2013) determines the
patch orientation without considering the learned templates
in the network. As we have shown in Sect. 4.5, the former
strategy often works better. In addition, RI-Conv is very easy
to implement, while Zhao andNgo (2013)may produce com-
plicated gradients on the input patch.

5.3 Model Comparison

We compare the strategies discussed in this section, i.e.,
training a non-reversal-invariant deep network followed
by post-processing deep features for reversal invariance,
and training a reversal-invariant deep network to generate
reversal-invariant deep features directly.

We use the networks trained in the previous experiments,
namely AlexNet-AUGM and AlexNet-MAX-AUGM, to
extract deep features on the image classification dataset
used in Sect. 5.1. Results are summarized in Table 10.
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Fig. 7 Error rate curves and training/testing loss curves on the CIFAR datasets and the ILSVRC2012 dataset. We report top-1 and top-5 error
rates in CIFAR and ILSVRC2012, respectively

Table 10 Classification accuracy (%) comparison with deep features
extracted using different strategies. Note that the first part of this table
is not the same as in Table 5, since we have used a different way of

training AlexNet (see Sect. 5.2.2). With Max-Conv, we do not need to
post-process the feature vector since it is naturally reversal-invariant

Model C256 L-21 I-67 S-397 P-37 A-100 F-102 B-200

AlexNet, ORIG feature 70.75 95.14 58.04 45.12 81.02 49.89 87.39 47.53

AlexNet, AVG feature 71.97 95.60 60.01 46.64 81.98 54.10 88.40 49.53

AlexNet, MAX feature 71.81 95.55 59.77 46.47 81.73 54.03 88.29 49.42

AlexNet-MAX, ORIG feature 71.78 95.67 59.91 46.47 81.92 54.11 88.17 49.55

We observe that the features extracted from AlexNet-MAX
produce consistently higher accuracy than the original non-
reversal-invariant features. The performance is comparable
to the Average-Deep andMax-Deep features, while the com-
putation is cheaper. In one word, designing intrinsically
reversal-invariant modules is helpful to visual recognition.

5.4 Summary

In this part, we generalize the idea of reversal-invariant
representation from the BoF model to deep CNNs, and ver-
ify that reversal invariance is also important in both deep
feature extraction and deep network training. We propose
two effective algorithms (RI-Deep and RI-Conv). First,
computing neuron responses on a testing image as well as
its reversed version makes it possible to extract reversal-
invariant deep features from a pre-trained network which

is not reversal-invariant. Second, a small modification in
convolution leads to a deep network which is intrinsically
reversal-invariant, which has larger capacity yet unchanged
complexity, meanwhile makes the feature extraction more
effective. Reversal-invariant convolution also cooperates
well with data augmentation, creating the possibility of
applying deep neural networks to even larger databases.

Last but not least, the Max-Conv operator is easy to
implement yet fast to carry out (less than 20% extra time
is required).

6 Conclusions

It is important to consider reversal invariance in order to
achieve more robust image representation, but conventional
BoF and CNN models often lack of an explicit implemen-
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tation of reversal invariance. This paper presents a basic
idea that designs reversal-invariant local patterns, such as
Max-SIFT and RIDE (local descriptors), RI-Deep (deep
features) and RI-Conv (convolution), so that reversal invari-
ance is guaranteed in the representation based on the BoF
and CNN models. The proposed algorithms are very easy to
implement yet efficient to carry out, meanwhile producing
consistent accuracy improvement. The success of our algo-
rithms also reveals that designing invariance directly is often
more effective than using data augmentation, and that these
two strategies can often cooperate with each other towards
better visual recognition.
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Appendix 1: Orientation Estimation of Dense SIFT

In this section,we aim at proving an approximated estimation
of SIFT orientation based on its local gradient values. The
approximation is used in Sect. 4.2.1 of the main article.

The Implementation of SIFT

The implementation of SIFT is based on the original
paper (Lowe 2004). In this subsection, we briefly review the
process of orientation assignment and descriptor representa-
tion. Part of the statements refer to (Lowe 2004).

First let us assume that the assignment of descriptor scale
is finished, which fits the case of dense sampling (Bosch et al.
2006) where all the descriptors have the same, fixed win-
dow size. Denote an image as I = [a (x, y)]W×H . The
gradient magnitude, m (x, y), and orientation, θ (x, y), is
pre-computed for each pixel:

{
m (x, y) = [

Δx (x, y)2 + Δy (x, y)2
]1/2

θ (x, y) = arctan
[
Δy (x, y) /Δx (x, y)

] , (8)

in which Δx (x, y) and Δy (x, y) are defined as:

{
Δx (x, y) = a (x + 1, y) − a (x − 1, y)
Δy (x, y) = a (x, y + 1) − a (x, y − 1)

. (9)

The magnitude and orientation on each pixel are then used
to estimate the dominant orientation of that descriptor. An
orientation histogram is constructed using the gradient orien-
tation of the pixels within a region around the keypoint. Each
sample added to the histogram is weighted by its gradient
magnitude and by aGaussian-weighted circularwindowwith

a smoothing parameter σ that is 1.5 times that of the scale of
the keypoint. Peaks in the orientation histogram correspond
to dominant orientations of local gradients. The highest peak
in the histogram is detected, and then any other local peak
that is within 80% of the highest peak is used to also create a
keypoint with that orientation. Therefore, for locations with
multiple peaks of similar magnitude, there will be multiple
keypoints created at the same location and scale but different
orientations.

The above method works well on image matching and
retrieval (Lowe 2004), but we do not need to assign multi-
ple orientations for a descriptor in the classification tasks.
As an alternation, we can also estimate a unique accumu-
lated orientation using the following method. Every gradient
magnitude is decomposed along both x and y axes, i.e.,

{
mx (x, y) = m (x, y) × cos θ (x, y)
my (x, y) = m (x, y) × sin θ (x, y)

, (10)

and all the decomposed components are accumulated on x
and y axes, respectively:

{
Gx = ∑

x,ymx (x, y)
Gy = ∑

x,ymy (x, y)
. (11)

Finally we get a 2-D vector G = (
Gx ,Gy

)� indicating the
orientation of that descriptor.

Of course, we can also follow the orientation assignment
of original SIFT implementation (Lowe 2004). In practice,
we have implemented RIDE with both dominant and accu-
mulated orientations, and found that the latter one is slightly
better. Another reason why we prefer the accumulated orien-
tation is that it is a continuous value in [0, 2π), which makes
it easier for us to design the RIDE-8 algorithm.

In descriptor representation, we inherit m (x, y) and
θ (x, y) values of each pixel. The implementation of dense
SIFT (Vedaldi and Fulkerson 2010) does not rotate the
descriptor region. The region of a descriptor is partitioned
into 4 × 4 grids, and an 8-bin orientation histogram is con-
structed in each grid. The central orientation value of the
j-th bin is θ j = jπ/4, j = 0, 1, . . . , 7. Then the gradient
magnitude of each pixel is then trilinearly quantized onto at
most two bins. By trilinear we mean that if the orientation of
a pixel, θ (x, y), is closest to two standard orientation, say,
θa < θ (x, y) < θb, then the coefficients assigned to the bins
are:

⎧
⎪⎨

⎪⎩

ma = m (x, y) × θb − θ (x, y)

θb − θa

mb = m (x, y) × θ (x, y) − θa

θb − θa

. (12)

An 8-dimensional orientation histogram is thereafter obt-
ained in each of the 4×4 grids. Finally, the 128-dimensional
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descriptor is constructed by concatenating the histogramvec-
tors from all 4 × 4 grids.

Orientation Estimation

The main goal of this part is to prove the next theorem for
orientation approximation:

Theorem Given a densely sampled SIFT descriptor d =
(dk, θk)k=1,2,...,128, where dk and θk are the gradient value
and the histogram orientation for the k-th dimension, respec-
tively. Its accumulated orientation θ approximately satisfies:

tan θ = Gy (x, y)

Gx (x, y)
=
∑

x,ymy (x, y)
∑

x,ymx (x, y)
≈
∑

kdk sin θk∑
kdk cos θk

. (13)

For this, we only need to prove the following lemma:

Lemma When a gradient value (m, θ) with an arbitrary
orientation is quantized as (ma, θa) and (mb, θb) (θa < θ <

θb) with the trilinear interpolation, i.e., using (12):

⎧
⎪⎨

⎪⎩

ma = m × θb − θ

θb − θa

mb = m × θ − θa

θb − θa

, (14)

the impacts on SIFT descriptor representation, before and
after quantization, are approximately the same, i.e.,

{
m cos θ ≈ ma cos θa + mb cos θb
m sin θ ≈ ma sin θa + mb sin θb

. (15)

Proof we only prove the first formula, since the proof of the
other one is very similar.

Using (14) to substitute ma and mb in (15) yields:

ma cos θa + mb cos θb

= m × θb − θ

θb − θa
× cos θa + m × θ − θa

θb − θa
× cos θb

= m ×
(

θb − θ

θb − θa
× cos θa + θ − θa

θb − θa
× cos θb

)
. (16)

Let us make the approximation that:

⎧
⎪⎨

⎪⎩

θb − θ

θb − θa
≈ sin (θb − θ)

sin (θb − θa)
θ − θa

θb − θa
≈ sin (θ − θa)

sin (θb − θa)

, (17)

thus (16) becomes:

ma cos θa + mb cos θb

= m × θb − θ

θb − θa
× cos θa + m × θ − θa

θb − θa
× cos θb

≈ m ×
[
sin (θb − θ)

sin (θb − θa)
× cos θa + sin (θ − θa)

sin (θb − θa)
×cos θb

]

= m × [sin (θb − θ) cos θa + sin (θ − θa) cos θb]

sin (θb − θa)

= m × (sin θb cos θ cos θa − cos θ sin θa cos θb)

sin (θb − θa)

= m × cos θ × (sin θb cos θa − cos θb sin θa)

sin (θb − θa)

= m cos θ, (18)

which finishes the proof. 
�
Weprovide a discussion on the approximation (17). Given

that θb − θa = π/4, the maximum relative error of the
approximation is less than 11%. Let us define f (x) = sin x

x .
Since limx→0 f (x) = 1 and f (x) is a monotonically
decreasing function, large errors of (17) appear when θb − θ

or θ − θa is quite small, in which case the ma or mb is also
quite small thus the absolute estimation error is ignorable.
Therefore, we can conclude that the approximation (17) is
reasonable.

Appendix 2: Generalized RIDE Descriptors

In this section, we provide a detailed discussion of generaliz-
ing RIDE to dealing with more types of reversal and rotation
invariance. It is a supplementary explanation to Sect. 4.2.3
of the main article.

RIDE-2, RIDE-4 and RIDE-8

We start from an alternative description of the RIDE-2,
RIDE-4 and RIDE-8 algorithms.

Recall that we have computed a 2-D global gradient vector
G = (

Gx ,Gy
)�, inwhichGx andGy estimate the horizontal

and vertical orientation of a descriptor, respectively. If it is
constrained that Gx � 0 holds for a descriptor d, we need
to generate a left-right reversed version of that descriptor,
dR, and select the one in d and dR that satisfies Gx � 0.
Such a descriptor, denoted as r2 (d), is left-right reversal-
invariant. IfGx = 0 ford, bothd anddR satisfy the condition.
In such cases, we choose the one with the larger sequential
lexicographic order.

If we need to achieve upside-down reversal invariance, the
value Gy should also be constrained, i.e., Gy � 0. We then
generate 3 other versions of a descriptor d, namely d0, d1,
d2 and d3, in which d0 is just d, d1 is the left-right reversed
version of d, d2 is the upside-down reversed version of d, and
d3 is the left-right and upside-down reversed version of d.
Obviously, there exists at least one of them that satisfies both
Gx � 0 and Gy � 0. If more than one candidates satisfy
the conditions, we choose the one with the largest sequential
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Table 11 Classification
accuracy (%) of different
versions of RIDE on different
versions of the Aircraft-100
dataset. The training/testing split
is fixed in all cases

Algorithm Aircraft-100-1 Aircraft-100-2 Aircraft-100-4 Aircraft-100-8

ORIG 58.75 48.52 39.33 25.11

RIDE-2 55.22 55.22 43.20 29.71

RIDE-4 47.44 47.44 47.44 35.41

RIDE-8 43.47 43.47 43.47 43.47

Bold values indicate the highest classification accuracy on each dataset

lexicographic order. Such a descriptor, denoted as r4 (d), is
both left-right and upside-down invariant.

The last type of variant comes from rotating the descrip-
tor by 90◦. Adding the 90◦-rotation option into left-right and
upside-down reversals obtains up to 8 descriptor versions.We
generate all these variants and select one from them by con-
strainingGx � Gy � 0, i.e.,Gx � 0,Gy � 0 andGx � Gy .
If more than one candidates satisfy the conditions, we choose
the one with the largest sequential lexicographic order. Such
a descriptor, denoted as r8 (d), is invariant through all the
reversal and rotation operations.

We provide an intuitive explanation of RIDE-2, RIDE-4
and RIDE-8 algorithms. All the reversal and rotation opera-
tions change the orientation of a descriptor correspondingly.
RIDE-2, in which Gx � 0, limits the orientation to falling
into an interval of a 180◦ range. This range is further shrunk
into 90◦ in RIDE-4, and 45◦ in RIDE-8. A descriptor with
any orientation can be aligned into the range with one or a
few reversal or rotation variations, and in this way we can-
cel out the reversal and rotation operations and achieve the
desired reversal invariance.

Experiments

We evaluate the original descriptors with RIDE-2, RIDE-4
and RIDE-8 on the Aircraft-100 dataset (Maji et al. 2013).
We use four different versions of the dataset. The aligned
version, denoted as Aircraft-100-1, is the one in which all
the objects are manually aligned to the right. Other three
versions, denoted as Aircraft-100-2, Aircraft-100-4 and
Aircraft-100-8, are generated by randomly assigning one
of 2, 4 and 8 image transformations to each image in the
aligned dataset. Here, 2 transformations include unchanged
and the left-right reversal, 4 transformations are constructed
by adding the option of upside-down reversal to 2 transfor-
mations, and 8 transformations are constructed by adding
the option of 90◦ rotation to 4 transformations. The property
of Aircraft-100-2 is very similar to the original (unaligned)
version of the Aircraft-100 dataset.

The basic setting follows what is used in the main article
(Sect. 4.6.1).We only use the SIFT descriptor, and do not use
spatial pyramids in the following experiments. The classifi-
cation results are summarized in Table 11. One can observe
that on the Aircraft-100-1 dataset, the system with original

descriptors (ORIG) works best. After original descriptors
are processed by RIDE, classification accuracy drops dra-
matically. The underlying reason is that RIDE harms the
descriptive power of original descriptors by performing a
one-of-many selection. The more candidates generated for
selection, the heavier accuracy drop is observed.

However, in the case of Aircraft-100-2, RIDE-2 works
better than ORIG. This implies that RIDE-2 captures the
left-right reversal invariance. Although the descriptive power
of SIFT is reduced, the benefit of reversal invariance is larger
than the loss in descriptive power. However, when we use
RIDE-4 and RIDE-8, the descriptive power continues to
drop but we do not obtain any new invariance, resulting
in the accuracy drop from RIDE-2 to both RIDE-4 and
RIDE-8. Similar results are also observed in the Aircraft-
100-4 dataset, i.e.,RIDE-4 is just enough to capture left-right
and upside-down reversal. In Aircraft-100-8 dataset, all the
reversal and rotation variance might be encountered, there-
fore RIDE-8 produces the highest accuracy.

The above experiments verify that RIDE increases the
robustness of descriptors but harms the descriptive power.
According to Table 11, one type of reversal/rotation variance,
if not captured, causes about 10% accuracy drop, mean-
while performingRIDE to capture an unnecessary invariance
causes about 5% accuracy drop. Therefore it is not wise to
cover those unnecessary types of invariance: the best strat-
egy is to take what we need.

Consequently, we do not use RIDE-4 and RIDE-8 in all
the experiments presented in the main article, since all the
evaluated datasets, either on fine-grained object recognition
or scene understanding, often do not contain upside-down
reversed or 90◦-rotated objects. RIDE-2 produces the best
classification accuracy in such cases.
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