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ABSTRACT
In this paper, we demonstrate that the essentials of image
classification and retrieval are the same, since both tasks
could be tackled by measuring the similarity between im-
ages. To this end, we propose ONE (Online Nearest-neighbor
Estimation), a unified algorithm for both image classifica-
tion and retrieval. ONE is surprisingly simple, which only
involves manual object definition, regional description and
nearest-neighbor search. We take advantage of PCA and
PQ approximation and GPU parallelization to scale our al-
gorithm up to large-scale image search. Experimental results
verify that ONE achieves state-of-the-art accuracy in a wide
range of image classification and retrieval benchmarks.

Categories and Subject Descriptors
I.4.10 [Image Processing and Computer Vision]: Im-
age Representation—Statistical ; I.4.7 [Image Processing
and Computer Vision]: Feature Measurement—Feature
representation

General Terms
Algorithms, Experiments, Performance

Keywords
Image Classification; Image Retrieval; ONE; CNN

1. INTRODUCTION
Past decades have witnessed an impressive bloom of mul-

timedia applications based on image understanding. For
example, the number of categories in image classification has
grown from a few to tens of thousands [13], and deep Convo-
lutional Neural Networks (CNN) have been verified efficient
in large-scale learning [25]. Meanwhile, image retrieval has
been transplanted from toy programs to commercial search
engines indexing billions of images, and new user intentions
such as fine-grained concept search [62] are realized and
proposed in this research field.
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Figure 1: An image retrieval example illustrating the intu-
ition of ONE (best viewed in color PDF). On a query image,
it is possible to find a number of semantic objects. Searching
for nearest neighbors with one object might not capture the
exact query intention, but fusing yields satisfying results.
A yellow circle with the word TP indicates a true-positive
image. Images are collected from the Holiday dataset [20].

Both image classification and retrieval receive a query
image at a time. Classification tasks aim at determining
the class or category of the query, for which a number of
training samples are provided and an extra training process
is often required. For retrieval, the goal is to rank a large
number of candidates according to their relevance to the
query, and candidates are considered as independent units,
i.e., without explicit relationship between them. Both image
classification and retrieval tasks could be tackled by the Bag-
of-Visual-Words (BoVW) model. However, the ways of per-
forming classification [10][26] and retrieval [46][38] are, most
often, very different. Although all the above algorithms start
from extracting patch or regional descriptors, the subsequent
modules, including feature encoding, indexing/training and
online querying, are almost distinct.

In this paper, we suggest using only ONE (Online Nearest-
neighbor Estimation) algorithm for both image classifica-
tion and retrieval. This is achieved by computing similarity
between the query and each category or image candidate.
Inspired by [4], we detect multiple object proposals on
the query and each indexed image, and extract high-quality
features on each object to provide better image description.
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On the online querying stage, the query’s relevance to a
category or candidate image is estimated by the averaged
nearest distance from querying objects to the objects in that
category or candidate image. As shown in Figure 1, extract-
ing more objects helps to find various visual clues and obtain
better results. To improve efficiency, we leverage the idea of
approximate nearest-neighbor search, and take advantage of
GPU parallelization for fast computation. Experiments are
performed on a wide range of image classification/retrieval
datasets. Our algorithm achieves state-of-the-art accuracy
with reasonable computational overheads.

The major contribution of this paper is summarized in
three aspects. First, we reveal the possibility of unifying
image classification and retrieval systems into ONE. Sec-
ond, ONE achieves the state-of-the-art accuracy on a wide
range of image classification and retrieval tasks, defending
both training-free models for image recognition and region-
al features for near-duplicate object retrieval. Finally, we
make full use of GPU parallelization to alleviate heavy on-
line computational overheads, which might inspire various
multimedia applications and research efforts in the future.

The remainder for this paper is organized as follows. Sec-
tion 2 briefly introduces related works. Section 3 illustrates
the ONE algorithm and key acceleration techniques. After
showing experiments in Section 4, we conclude in Section 5.

2. RELATED WORKS

2.1 Image Classification
Image classification is a fundamental task which is aimed

at categorizing images according to their semantic contents.
Recent years, researchers propose to extend conventional
tasks [26][16] in two aspects, i.e., from coarse-grained to fine-
grained [33][49][36], and from small-scale to large-scale [13].

The Bag-of-Visual-Words (BoVW) model is widely adopt-
ed to represent images with high-dimensional vectors. It
often consists of three stages, i.e., descriptor extraction, fea-
ture encoding and feature summarization. Due to the limit-
ed descriptive power of raw pixels, local descriptors such as
SIFT [28][54] and HOG [11] are extracted. A visual vocabu-
lary or codebook is then built to capture data distribution in
the feature space. Descriptors are thereafter quantized onto
the codebook as compact feature vectors [63][51][37][55], and
summarized as an image-level representation [26][17][57][59].
These feature vectors are normalized [56], and fed into gener-
alized machine learning algorithms [15][41] for training and
testing. Besides, there are also efforts on designing training-
free classification systems [4].

2.2 Image Retrieval
Image retrieval is closely related to a number of real-world

multimedia applications. Given an image database and a
query, it requires finding relative candidates to the query
in a short time. As the rapid growth of the Internet [40],
large-scale image search attracts more and more attentions
in both academic and industrial fields [62].

The BoVW model is also widely adopted for image re-
trieval [34]. Handcrafted descriptors such as SIFT [28][58]
and SURF [3] are extracted on the detected regions-of-interest
(ROI) of an image [29][30]. A codebook, often with a large
size, is trained in an approximate manner [38] to capture
data distribution. Descriptors are quantized onto the code-
book in an either hard [38] or soft manner [39]. Codebook

training-free methods [73] are also suggested for feature en-
coding. Then the flowchart differs from classification in the
way of organizing a huge number of features. An inverted
index [46] is constructed to store the relationship between
images and features. When a query image comes, descrip-
tors are extracted and quantized accordingly to look up the
inverted index. When the initial search results are available,
they are often sent into a post-processing stage for higher
precision and recall. Popular post-processing approaches
include geometric verification [8], query expansion [9] and
diffusion-based algorithms [23][60].

2.3 Convolutional Neural Networks
Convolutional Neural Networks (CNN) are based on the

theory that a multi-layer network is able to fit any complicat-
ed functions. In the early years, neural networks are verified
efficient on simple recognition tasks [27]. Recent years, the
available of large-scale training data (e.g., ImageNet [13])
and powerful GPUs make it possible to train deep CNNs
which significantly outperform the BoVW models [25].

A CNN is often composed of a number of layers. In each
layer, responses from the previous layer are convoluted and
activated by a differentiable function. Thus, the network
could be formulated as a composed function, and the error
signals produced by the difference between supervised and
predicted labels could be back-propagated. Some recent-
ly proposed tricks are also crucial to help CNNs converge
faster and prevent over-fitting, such as the ReLU activation
function and the dropout technique [25]. It is suggested that
deeper networks produce better recognition results [45][47],
and intermediate responses of CNNs could also be trans-
planted onto other image applications [14][43]. The discus-
sion of different configurations in CNNs is available in [6][65].

2.4 Approximate Nearest-neighbor Search
It is a common demand that finding the nearest neighbor

of a D-dimensional query vector in a large database of N
candidates. Since an exhaustive search algorithm requires
as many as O(ND) computations which is often intractable,
approximate algorithms are adopted to accelerate this pro-
cess with reasonable accuracy loss.

One family of solutions involve constructing a data struc-
ture for efficient lookup. Based on the k-d tree [18] or
other similar structures [50], efficient Approximate Nearest
Neighbor (ANN) search algorithm is proposed [31], and fur-
ther applied on other applications such as large-scale vector
clustering [38]. A notable drawback of such methods is
the unavailability of distance between the query and each
candidate, which makes it impossible to provide a ranklist
for retrieval and related tasks.

There are also research efforts on encoding high-dimensional
data into distance-preserving compact codes. A typical ex-
ample is quantization, in which the distance between two
vectors is estimated by the distance between codewords.
Product Quantization (PQ) [21] trains a large codebook
with the Cartesian product of small sub-codebooks. PQ
then traverses each candidate and computes its distance to
the query quickly with a fast pre-computation on codewords.
Improvements of PQ include Cartesian K-Means [35] and
Composite Quantization [69]. Another efficient approach,
Locality Sensitive Hashing (LSH) [19], measures the dis-
tance by the Hamming distance and could be embedded to
improve image search performance [70].
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Figure 2: The difference between image classification and
retrieval with the same query (green diamond). Red squares
and blue circles indicate samples of the bookstore and library
classes, respectively. For each image, three most significant
visual attributes are listed, with the colors indicating their
bias in visual concepts (red for bookstore, blue for library,
and green for neutral). Candidates are ranked according to
their relevance (distance) to the query. The dashed line il-
lustrates the optimal linear classifier between two categories.

3. ALGORITHM

3.1 A Unified Framework
Since we aim at designing a unified framework for image

classification and retrieval, we first make a brief discussion
on the essential difference between these two tasks.

Both classification and retrieval involve measuring the sim-
ilarity between the query and training or candidate images.
The only difference lies in that a class label is provided for
each training sample in classification. Therefore, we are
actually computing the similarity between the query and a
category, i.e., a set of images. As observed in [4], image-to-
class distance is much more stable than image-to-image dis-
tance. On the other hand, candidates in retrieval are often
considered independently, i.e., without explicit relationship
between them. An intuitive example is shown in Figure 2.
The query (a library image) is closest to a bookstore image in
the feature space, and the outlier (#1) significantly harms
the retrieval performance. However, when more labeled
training samples are available, we obtain the optimal linear
classifier between library and bookstore which predicts the
correct label of the query.

In summary, classification tasks benefit from the class
labels of images, but such information is not available in re-
trieval datasets. A direct solution is to augment the database
by extracting multiple object proposals for each image,
and consider each object as an individual image sample
(with a “class label”). After each object is equipped with
a high-quality regional descriptor, it is possible to deal with
both image classification and retrieval problems by comput-
ing image-to-class distance [4].

3.2 Online Nearest-neighbor Estimation
This part formulates the previous ideas as the ONE (On-

line Nearest-neighbor Estimation) algorithm. We start from
an image classification/retrieval dataset of N images,

I = {(I1, y1) , (I2, y2) , . . . , (IN , yN )} (1)

In which, In and yn are the image data and label of the
n-th image, respectively. For image classification, yn ∈
{1, 2, . . . , C} is pre-defined by the dataset, while for image
retrieval we simply set C = N and yn = n, indicating that
each instance belongs to an independent “category”.

For each image In, a set of object proposals Pn is con-
structed,

Pn = {pn,1,pn,2, . . . ,pn,Kn} (2)

Here, pn,k =
(
xmin
n,k , y

min
n,k ,Wn,k, Hn,k, θn,k

)
is the k-th object

of the n-th image, denoted by the coordinate of its upper-left
corner, its width and height, and θn,k ∈ [0◦, 360◦) indicat-
ing the angle by which the image is rotated before feature
extraction. The designation of Pn will be discussed in detail
later. Cropping and rotating In according to pn,k yields
a subimage In,k, on which we compute a regional vector
representation fn,k. Specifically, we extract 4096-D deep
conv-net features which are the intermediate responses of
a CNN [45]. Although other features such as VLAD [22]
could also be adopted, we choose deep conv-net features
because the excellent descriptive ability. According to a sim-
ple experiment based on NN feature search on the Holiday
dataset [20], VLAD obtains a mAP score of 0.526 [20] while
deep conv-net features get 0.642 [43].

Next we follow [4] to perform a Naive-Bayes Nearest-
Neighbor (NBNN) search. We first define the feature set
Fc, c = 1, 2, . . . , C, which is composed of all the features
extracted from the objects that belong to the c-th category,

Fc = {fn,k | yn = c ∧ 1 6 k 6 Kn} (3)

For a query image I0, we compute its distance to each cat-
egory c ∈ {1, 2, . . . , C}, which is the averaged distance be-
tween each object of In and its nearest neighbor in Fc,

dist(I0, c)
.
= dist(I0,Fc) (4)

=
1

K0

K0∑
k=1

dist(f0,k,Fc) (5)

=
1

K0

K0∑
k=1

min
f∈Fc

‖f0,k − f‖22 (6)

When all the image-to-category distances are available, it
is convenient to analyze them for specified purposes, such as
finding the minimum one for category prediction, or sorting
them for a ranklist of candidates.

3.3 Object Proposals
It remains to construct an object proposal set Pn for each

image In. For this purpose, we might refer to unsuper-
vised object detectors, including Objectness [1], Selective
Search [48] and Binarized Normed Gradients (BING) [7].
These algorithms often provide a number of bounding boxes
which are the possible locations of objects. By sorting the
confidence scores of the boxes, it is possible to obtain an
arbitrary number KD of top-ranked object proposals1.
1Due to the limited space, please refer to the publications
above for examples of object detection.
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In comparison, we also adopt an alternative approach
which extracts manually defined objects on an image. For
this, we first define the number of object proposal layers
LO, and then enforce that objects within one layer have
the same size meanwhile are distributed as dispersive as
possible. Denote the width and height of image In as Wn

and Hn. In the l-th layer, there are rl × rl objects with a
fixed size Wn

sl
× Hn

sl
, where rl and sl are the object density

and scale parameters which will be discussed later. The
upper-left corner of the (a, b)-th box, 0 6 a, b < rl, is locat-

ed at
(
a ·
(
Wn − Wn

sl

)
/ (rl − 1) , b ·

(
Hn − Hn

sl

)
/ (rl − 1)

)
.

An LO-layer model has KLO =
∑LO

l=1 r
2
l object proposals.

Either a detected or manually defined object might be
rotated. Here we consider 4 simplest rotations, i.e., θn,k ∈
{0◦, 90◦, 180◦, 270◦}. As an increasing number of objects
might result in heavier computational overheads, we might
only rotate the top-KR detected regions (KR 6 KD), or
regions on the first LR (LR 6 LO) layers. Such a strategy
produces KD + 3KR or KLO + 3KLR object proposals.

The comparison between automatically detected and man-
ually defined object proposals is similar to that between
detected and densely sampled descriptors which is well dis-
cussed in the conventional Bag-of-Visual-Words (BoVW)
models. We will show in Section 4.2 that both strategies
obtain satisfying classification and retrieval results.

3.4 Approximate Nearest-neighbor Search
Since ONE requires a huge number of NN queries, linear

exhaustive NN search might be computationally expensive.
We adopt both Principal Component Analysis (PCA) and
Product Quantization (PQ) [21] to reduce time complexi-
ty. Deep conv-net features [14] (4096 dimensions) of each
region are first reduced to D dimensions by PCA. Then it
is partitioned by PQ into M segments and each subvector is
quantized onto one of T codewords.

It is worth noting that vector dimensions after PCA re-
duction are ranked by decreasing energy, whereas PQ works
better in the case that each segment contains vectors with
approximately equal information. Therefore, we perform
dimension rearrangement to make PCA and PQ cooper-
ate better, in which the m-th PQ segment is composed of
the (m,M +m, 2M +m, . . . ,D −M +m)-th PCA-reduced
dimensions. In practise, this strategy consistently boosts
the classification/retrieval accuracy by about 2%. It is also
instructive to whiten PCA features for similar effects.

Assume there are N training/candidate images in a clas-
sification/retrieval task. For each image, K object win-
dows are proposed, on each of which we extract a 4096-
dimensional feature. Therefore for each query, we need to
process K queries in a database of KN vectors. An exhaus-
tive NN search takes O

(
4096K2N

)
time and O(4096KN)

memory. In an approximate NN search, features are PCA-
reduced to D dimensions, and quantized with a PQ of M
segments and T codewords for each segment. According to
PQ [21], the time complexity is O

(
K2NM +KDT

)
, mean-

while storing quantized vectors and a codebook requires
KNM log2T bits and DT floating numbers in total. Since
M � D � 4096 and T � N , both time and memory costs
are greatly reduced. When the parameters are fixed, the
computational complexity grows linearly with the dataset
size N , which guarantees that our algorithm scales up well.

Section 4.4 provides time/memory costs in experiments.

3.5 GPU Acceleration
Despite the approximation by PCA and PQ, the compu-

tational cost on the online querying stage is still very high,
e.g., about 5× 1011 floating operations to search one query
among one million candidates (see Section 4.4). Fortunately,
most of the heavy computation comes from the linear search
stage of PQ. We can take advantage of GPU parallelization
for efficient acceleration.

Graphics Processing Unit (GPU) is a specialized electron-
ic device designed to rapidly manipulate and alter memory
to accelerate image processing in a frame buffer intended
for output to a display. It often contains a large number of
stream processors in which large data blocks are processed in
parallel. The highly parallel structure of GPUs makes them
more effective than CPUs for large-scale simple-arithmetic
operations. Recent years, GPUs have been widely adopted
for accelerating deep CNN training [25].

It is worth noting that the storage of a GPU is often
limited, e.g., an NVIDIA GeForce GTX Titan has only 6GB
memory. We shall carefully design the parameters discussed
above, so that quantized vectors could be stored in a GPU.
An extensive study on the proper parameters are provided
in Section 4.2.

4. EXPERIMENTS

4.1 Datasets and Implementation Details
For image classification, we use the LandUse-21 dataset [64],

the Indoor-67 dataset [42] and the SUN-397 dataset [53]
for scene classification. 80, 80 and 50 images per category
are randomly selected for training. We also use the Oxford
Pet-37 dataset [36], the Oxford Flower-102 dataset [33]
and the Caltech-UCSD Bird-200-2011 dataset [49] for fine-
grained object recognition. 100, 20 and 30 images per cat-
egory are randomly selected for training. The SUN-397
dataset [53] is one of the largest available datasets for scene
understanding, which provides an evidence that our algo-
rithm scales up well. For each dataset, the random train-
ing/testing splits are repeated for 10 rounds and averaged
classification accuracy is reported.

For image retrieval, we use the UKBench dataset [34]
and the Holiday dataset [20]. They are both near-duplicate
instance search datasets. The UKBench dataset consists of
2550 objects and 4 photos are taken for each of them (10200
images in total). The Holiday dataset is composed of 500
groups of objects or scenes with a handful of instances in
each of them. The standard evaluation uses the N-S score
(the average number of true-positive images in top-4 results)
for UKBench, and the mAP (mean average precision) score
for Holiday. To test the scalability of our model, we also
mix the Holiday dataset with one million irrelevant images
crawled from the Web.

For manually defined objects, we use LO = 5 layers, with
fixed parameters (s1, s2, s3, s4, s5) = (1.0, 1.2, 1.5, 2.0, 2.5)
and (r1, r2, r3, r4, r5) = (1, 2, 3, 4, 5), respectively. For au-
tomatic object detection, we use Selective Search [48] and
choose top-ranked objects according to the confidence s-
cores. For object representation, we compute a pre-trained
19-layer VGG-Net [45], and extract the 4096-D responses
of the second-to-last fully connected layers, without applying
ReLU activation. Feature vectors are square-root normal-
ized and then `2-normalized after PCA reduction.
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Objects LO = 1 LO = 2 LO = 3 LO = 4 LO = 5

LR = 0 67.18 73.41 77.63 82.18 85.71
LR = 1 67.40 73.69 77.95 82.42 86.11
LR = 2 − 73.78 78.01 82.47 86.14
LR = 3 − − 78.03 82.51 86.18
LR = 4 − − − 82.53 86.22
LR = 5 − − − − 86.24

(a) Classification Accuracy (%) on Flower-102

Objects LO = 1 LO = 2 LO = 3 LO = 4 LO = 5

LR = 0 0.751 0.772 0.796 0.826 0.847
LR = 1 0.816 0.832 0.837 0.854 0.871
LR = 2 − 0.838 0.848 0.858 0.874
LR = 3 − − 0.861 0.868 0.880
LR = 4 − − − 0.882 0.883
LR = 5 − − − − 0.887

(b) Retrieval Accuracy (mAP) on Holiday

Table 1: Classification and retrieval accuracy with respect
to the complexity of manually defined objects.
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Figure 3: Classification/retrieval accuracy with respect to
the way of defining objects and the number of proposals. We
first construct K = 220 objects (LO = LR = 5 for manual
definition and KD = KR = 55 for automatic detection), and
randomly select a subset of them for evaluation.

4.2 Model and Parameters
We discuss the parameters of the ONE algorithm, i.e.,

the object proposal set P, the PCA-reduced dimension D,
and the number of segments M and codewords T for PQ.
For quick evaluations, we evaluate the classification and
retrieval accuracy on two relatively smaller datasets, namely
the Flower-102 dataset and the Holiday dataset.

We first use accurate NN search to evaluate classification
and retrieval accuracy with respect to the object proposals.
Results are summarized in Table 1 (the number of layers of
manually defined object proposals) and Figure 3 (automat-
ic detection vs. manual definition with random selection),
respectively. One can observe that a larger number of ob-
ject proposals often produce better accuracy. Meanwhile,
manually defined and automatically detected objects pro-
duce comparable results, suggesting that it is the number

LandUse-21 Indoor-67 SUN-397

[24] 92.8 63.4 46.1
[61] − 63.48 45.91

[14] − − 40.94
[43] − 69.0 −
SVM 94.52 68.46 53.00
ONE 93.98 69.61 54.47
ONE+SVM 94.71 70.13 54.87

(a) Scene Recognition Accuracy (%)

Pet-37 Flower-102 Bird-200

[2] 54.30 80.66 −
[52] 59.29 75.26 −
[32] 56.8 84.6 33.3

[14] − − 58.75
[43] − 86.8 61.8

SVM 88.05 85.49 59.66
ONE 89.50 86.24 61.54
ONE+SVM 90.03 86.82 62.02

(b) Fine-Grained Recognition Accuracy (%)

Table 2: Classification accuracy on different datasets. In
each subtable, the first and second parts contain algorithms
without and with using deep conv-net features, respectively.

of object proposals that makes the major contribution to
boosting accuracy. When the number of object proposals is
sufficiently large (e.g., K > 60), manually defined objects
work even slightly better (86.24% vs. 86.16% on Flower-
102 and 0.887 vs. 0.878 on Holiday). Therefore, we only
use manually defined objects in later experiments.

For large-scale image search, we consider both PCA and
PQ for acceleration (see Section 3.4). The impact of pa-
rameters, i.e., PCA dimension D, PQ segments M and
codewords T , are summarized in Figure 4, 5 and 6, respec-
tively. We use K = 220 object proposals (LO = LR = 5) in
these experiments. Empirically, a proper set of parameters
achieve a good tradeoff between accuracy and computation-
al overheads. For example, partitioning a vector into 128
segments produces nearly the same accuracy compared to
64 segments, but requires almost doubled time and mem-
ory consumption on the online querying stage. We choose
parameters D = 512, M = 32 and T = 4096 as an accuracy-
complexity tradeoff. For small-scale experiments, i.e., the
number of training or candidate images is not greater than
104, we use PCA but do not use PQ for higher classification
and retrieval accuracy.

Moreover, we need to constraint the number of object
proposals K to fit the limited GPU memory. Recall from
Section 3.4 that PQ stores KNM log2T bits and DT floating
numbers, i.e, 1

8
KNM log2T + 4DT bytes, which should be

less than 6GB (the memory of a Titan GPU). When we
are dealing with one million images (N ≈ 106) in large-
scale experiments, K shall be no larger than 120. We use
LO = LR = 4 (K = 120) in practise. Of course the tradeoff
between more objects and more rotations could be deter-
mined according to detailed conditions. For example, in
the Oxford Buildings dataset [38] (less image rotation), it
might be better to use LO = 6 and LR = 2 (K = 106).
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Figure 4: Accuracy w.r.t. PCA dimen-
sion D. PQ is not used here.
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Figure 5: Accuracy w.r.t. PQ segments
M , with D = 1024 and T = 4096.
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Figure 6: Accuracy w.r.t. PQ code-
words T , with D = 1024 and M = 32.

BoVW+ONE ONE BoVW [70] [43] [71] [12] [67] [68]

Holiday 0.899 0.887 0.518 0.881 0.843 0.858 0.847 0.846 0.809
UKBench 3.887 3.873 3.134 3.873 − 3.85 3.75 3.77 3.60

Table 3: Comparison of retrieval accuracy with the state-of-the-arts. Among the competitors, [70] and [43] also use deep
conv-net features extracted on the Alex-Net [25]). While [70], [12] and [67] adopt post-processing, ONE does not.

4.3 Comparison to the State-of-the-Arts
We compare ONE with the state-of-the-art algorithms.
Image classification results are summarized in Table 2.

One could observe that our algorithm achieves competitive
accuracy in both scene recognition and fine-grained recog-
nition tasks. For fine-grained recognition, we do not use
any part detectors but simply extract regular object propos-
als, leading to inferior classification accuracy compared to
those using complicated part detectors, such as [66] (73.89%)
and [5] (85.4%) on the Bird-200 dataset. Our algorithm
could also cooperate with specialized part detectors.

Since a training process provides much benefit for image
classification, we also compare our model with conventional
machine learning approaches. We adopt LibLINEAR [15],
a scalable SVM implementation with a tradeoff parameter
C = 10. In most cases, ONE outperforms SVM, defending
the ability of a training-free algorithm for classification. The
fusion of ONE and SVM results, obtained by adding the con-
fidence scores directly and re-ranking, also shows superior
performance over both models, suggesting that complemen-
tary information is captured by different approaches.

Next we report image retrieval accuracy in Table 3. One
could observe that our algorithm, without post-processing,
outperforms all the competitors. Similar to image classifi-
cation, we also compare ONE with the conventional BoVW
model. Our model is implemented with SIFT extraction,
large codebook training and hard quantization [38], an in-
verted index structure and `p-norm weighting [72]. Although
ONE outperforms BoVW significantly, we notice that BoVW
works better to capture local clues that help retrieval. When
we fuse the results generated by both models, they comple-
ment each other and produce even higher accuracy. To the
best of our knowledge, the 0.899 mAP score on Holiday and
the 3.887 N-S score on UKBench rank among the highest
scores ever reported on these two datasets. When Holiday
is mixed with one million distractors, we get a 0.758 mAP
score with PCA and PQ approximation, which outperforms
0.724 reported in [70] and 0.633 in [68].

The excellent classification and retrieval performance comes
from a perfect cooperation of object detection and descrip-
tion, i.e., efficient image representation by conv-net features
and powerful retrieval process by ONE. Either applying NN
search on global image features (see Table 1) or replacing
deep conv-net features with BoVW-based features would
case dramatic accuracy drop.

4.4 Time and Memory Costs
This part provides an experimental study on the compu-

tational overheads of ONE. A theoretical analysis could be
found in Section 3.4. Parameters, i.e., D = 512, M = 32 and
C = 4096, are inherited from Section 4.2. Time and memory
costs of different models are summarized in Table 4.

For image classification, we take SUN-397 [53], the largest
dataset in our experiments, as the example. Following the
same setting provided by the authors, the numbers of train-
ing and testing images in one split are both N = 397× 50 ≈
20K. K = 220 (LO = LR = 5) object proposals are extract-
ed on each image. According to the analysis in Section 3.4,
classifying a single image requires approximately 4.5 × 108

floating multiplications and 3.2 × 109 floating summations,
which takes less than 0.1s on a Titan GPU, i.e., about 1800s
(0.5h) on the whole testing set. The memory storage on
GPU is about 200MB in this case. Compared with conven-
tional SVM classification which requires 8h and 2560MB for
one training and testing, our method is significantly faster
in time and cheaper in memory.

For image retrieval, we evaluate our algorithm on the
Holiday dataset [20] with one million distractors. With
N ≈ 1M and K = 120 (LO = LR = 4), we need ap-
proximately 2.4×108 floating multiplications and 4.5×1011

floating summations for each query, which require about 1.2s
on a Titan GPU, which is comparable with conventional
systems performed on CPU. The storage of about 45G bits
and 2M floating numbers fits well in the 6GB GPU memory.
Both time and memory costs are comparable to the state-
of-the-art approaches with deep conv-net features [70].

8



Classification Classification Retrieval Retrieval
with ONE with BoVW with ONE with BoVW

Descriptor Extraction Time (s, per image) 1.81 (CNN) 1.36 (SIFT) 1.75 (CNN) 0.83 (SIFT)
Codebook Training Time (h) 0.39 (PQ) 2.41 (GMM) 0.39 (PQ) 6.18 (AKM)
Codebook Training Memory (GB) 0.63 2.50 0.63 8.31
Feature Quantization Time (s, per image) 0.17 (PQ) 0.23 (FV) 0.17 (PQ) 0.10 (VQ)
Offline Training Time (h) − 7.71 (SVM) − 2.85 (IND)
Offline Training Memory (GB) − 2.50 (SVM) − 4.19 (IND)
Online Querying Time (s, per query) 0.08 < 0.01 1.17 0.56
Online Querying Memory (GB) 0.21 (PQ) 0.05 5.65 (PQ) 4.19 (IND)

Table 4: Comparison of computational costs between ONE and BoVW. Results are reported on SUN-397 (about 100K
images) for classification, and Holiday with 1M distractors for retrieval. For abbreviations: GMM – Gaussian Mixture
Model, AKM – Approximate K-Means [38], FV – Fisher Vectors [44], VQ – Vector Quantization, IND – inverted index.

It is worth noting that the actual computational costs
in ONE are much more expensive than conventional algo-
rithms. For example, ONE requires nearly 5× 1011 floating
operations for searching one query among one million can-
didates, while a simple BoVW-based approach often needs
no more than 109 [34][73]. GPU is the key to make ONE
produce results in a reasonable time (e.g. around one sec-
ond). Conventional algorithms often contain complicated
modules (e.g., inverted index, spatial verification, etc.) with
asynchronous memory access and/or a large number of serial
operations, making them difficult to be transplanted to GPU
for acceleration. As the rapid development of multi-GPU,
our algorithm might attract more attentions in the future.

5. CONCLUSIONS
This paper proposes to unify image classification and re-

trieval algorithms into ONE (Online Nearest-neighbor Es-
timation). We demonstrate that, with the help of high-
quality regional features, both classification and retrieval
tasks could be accomplished with a simple NBNN search [4].
We take advantage of PCA and PQ approximation as well as
GPU parallelization to alleviate heavy computational costs.
Despite the simplicity, our algorithm achieves state-of-the-
art image classification and retrieval performance.

The success of our algorithm inspires future research in
three aspects. First, the essence of image classification and
retrieval are the same, both of them could be tackled by
measuring image similarity. Second, extracting more ob-
jects often leads to higher classification/retrieval accuracy,
enlightening that image description, even with deep conv-
net features, is far from complete. Third, GPU is the future
of high performance computing, therefore designing a GPU-
friendly algorithm is necessary and beneficial.
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