
A. Supplementary Material
A.1. Transferable Examples for Semantic Segmentation and Object Detection

As shown in the main paper, adversarial examples can be transformed across networks with different training data. based
on different architectures, and even for different tasks. Some typical examples are shown in Figure 1, where the adversarial
examples from Network 1 are able to transfer to Network 2.
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Figure 1. Transferrable examples for semantic segmentation and object detection. These four rows, from top to bottom, shows the
adversarial attack examples within two detection networks, within two segmentation networks, using a segmentation network to attack a
detection network and in the opposite direction. The segmentation legend borrows that in [1].



A.2. Generating Geometric Patterns

As an additional showcase, the deep segmentation networks can be confused to output some geometric shapes, including
stripes, circles, triangles, squares, etc., after different adversarial perturbations is added to the original image. Results are
shown in Figure 2. Here, the added adversarial perturbation varies from case to case.
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Figure 2. The adversarial perturbations confuse the deep networks to output different geometric patterns as segmentation results, such as
a circle (the first row), a diamond (the second row), a square (the third row), and stripes (the fourth row). Here, FCN-Alex is used as the
baseline network (defender). All the perturbations are magnified by 10 for better visualization. The segmentation legend borrows that
in [1].



A.3. Same Noise, Different Outputs

In Figure 2 of the main article, we show that we can generate some adversarial perturbations to make a deep segmentation
network output a pre-specified segmentation mask (e.g., ICCV and 2017). But, the perturbations used to generate these two
segmentation masks are different.

Here, we present a more challenging task, which uses the same perturbations to confuse two networks. More specifically,
we hope to generate a perturbation r, when it is added to an image X, the FCN-Alex and the FCN-VGG models are confused
to output ICCV and 2017, respectively. To implement this, we apply the locally linear property of the network, and add two
sources of perturbations, i.e., r = r1 + r2, where r1 is generated on FCN-Alex with the mask ICCV, and r2 is generated
on FCN-VGG with the mask 2017. As shown in Figure 3, our simple strategy works very well, although the segmentation
boundary of each letter or digit becomes somewhat jagged.
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Figure 3. We add one adversarial perturbation (magnified by 10) to the same original image to generate different pre-specified segmen-
tation masks on two deep segmentation networks (FCN-Alex and FCN-VGG). This is a more difficult task compared to that shown in
Figure 2 of the main article, where two different adversarial perturbations are used to generate two pre-specified segmentation masks. The
blue regions in the segmentation masks are predicted as bus, a randomly selected class.
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