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ABSTRACT

This paper discusses spatial pooling, a basic and crucial prob-
lem in the Bag-of-Features (BoF) model. Conventional algo-
rithms such as Spatial Pyramid Matching (SPM) [1] hierarchi-
cally divide the image into exclusive and regular regions for
feature summarization, but we propose an extremely simple
algorithm named Generalized Regular Spatial Pooling (GR-
SP), which allows the pooling bins in the same layer have rel-
atively denser or sparser distributions. With the proposed al-
gorithm, it is possible to enhance the “representation power”
on each of the pooling layers. State-of-the-art classification
accuracy is achieved on several challenging image classifica-
tion datasets.

Index Terms— Image Classification, BoF Model, Gener-
alized Regular Spatial Pooling, Experiments

1. INTRODUCTION

Image classification has been a basic task in the computer vi-
sion community. It is an intrinsic challenge towards image
understanding and implies a wide range of real-world appli-
cations. Today, one of the most popular methods is to repre-
sent images with long vectors, and use a generalized classifier
such as SVM [2] for training and testing.

The Bag-of-Features (BoF) model [3][4] is widely used
for image representation. It is a statistics-based model which
summarizes local features into an image-level feature. As
the final stage of the BoF model, pooling is widely adopted
to capture the spatial invariance of the image. Beyond the
primary sum-pooling and max-pooling methods, efforts are
made towards better image representation. Among the nu-
merous spatial pooling methods, the most successful methods
are probably Pyramid Matching (PM) [5] and Spatial Pyramid
Matching (SPM) [1]. By dividing an image into several hier-
archical regions for feature summarization, it is possible to
capture richer semantic information in the individual parts of
the image. Many efforts are also made [6][7] to improve the
spatial pooling methods. However, conventional algorithms
often define the pooling bins as exclusive and regular grids
on the image plane, which limits the flexibility of the model

and makes it difficult to fit on large-scale image collection-
s. To overcome this shortcoming, we propose Generalized
Regular Spatial Pooling (GRSP), an extremely simple pooling
method which allows the bins in the same layer have denser
or sparser distributions, so that the “representation power” of
spatial pooling could be adjusted and enhanced. Despite the
simplicity, the proposed method is verified to achieve better
image representation than the spatial pyramids, and produces
the state-of-the-art classification accuracy on some challeng-
ing image classification datasets.

The remainder of this paper is organized as follows. First,
we provide a brief overview of the BoF model in Section 2.
Then Section 3 presents the Generalized Regular Spatial
Pooling (GRSP) algorithm. After extensive experiments and
discussions are given in Section 4, we draw our conclusions
in Section 5.

2. THE BAG-OF-FEATURES MODEL

The Bag-of-Features model starts from a raw image I =
(aij)W×H , where aij is the pixel at position (i, j). For better
local representation, a set of SIFT [8][9] descriptors is ex-
tracted: D = {(d1, l1) , (d2, l2) , . . . , (dM , lM )}, where dm

and lm denote the description vector and the spatial loca-
tion of the m-th descriptor, respectively. M is the number of
descriptors.

For encoding the descriptors, a codebook C is trained
using clustering methods. C is a B × D matrix consist-
ing of B vectors with dimension D, each of which is called
a codeword. Descriptors are then projected onto the space
spanned by the codewords. Typical encoding methods in-
clude LLC encoding [10] and FV encoding [11]. The en-
coded vector wm is named the corresponding visual word
of descriptor dm. Let W be the set of visual words: W =
{(w1, l1) , (w2, l2) , . . . , (wM , lM )}, and the visual words in
W are then aggregated into a single representation vector f
using max-pooling (for LLC encoding) or sum-pooling (for
IFV encoding). Extracting visual phrases [12] and feature
normalization [13] also help image classification.

The global pooling algorithm ignores rich spatial infor-
mation which could be very useful for image understanding.
State-of-the-art image classification systems [1][14][15] often



divide images into smaller regions for spatial context model-
ing. Explicitly, let J = {1, 2, . . . ,M} be the index set of
the descriptors in D. The spatial pooling algorithm defines S
subsets of J , denoted as {J1,J2, . . . ,JS}, and summarize
the feature vectors in each subset individually, obtaining S
individual pooled vectors {f1, f2, . . . , fS}. Finally, the pooled
vectors are concatenated as a long vector F which is the out-
put of the BoF model.

The BoF model could also be adopted with indexing
structures for image retrieval [16][17][18][19][20].

3. GENERALIZED REGULAR SPATIAL POOLING

Different spatial pooling algorithms define different index
subsets {J1,J2, . . . ,JS}. In this section, we illustrate the
definition of index subsets in Spatial Pyramid Matching (SP-
M) [1] and generalize it as the Generalized Regular Spatial
Pooling (GRSP) algorithm.

3.1. Spatial Pyramid Matching

The Spatial Pyramid Matching (SPM) [1] algorithm, also
known as Regular Spatial Pooling, defines the number of
layers L for spatial matching, and divides the image region
recursively into subregions for feature pooling.

Mathematically, let P be the set of pixels in image I. We
also define the (only one) pooling bin in the zeroth layer as
P0,0 = P . For l > 0 and 0 6 t < 4l, we divide the t-th
pooling bin in the l-th layer as 4 bins in the l+1-th layer, i.e.,
Pl+1,4t = PUL

l,t ,Pl+1,4t+1 = PUR
l,t , Pl+1,4t+2 = PLL

l,t and
Pl+1,4t+3 = PLR

l,t , where PUL
l,t , PUR

l,t , PLL
l,t and PLR

l,t denote
the upper-left, upper-right, lower-left and lower-right corners
of Pl,t, respectively, after Pl,t is divided into 2 × 2 equal-
sized subregions. One can easily see that there are 2l × 2l

pooling bins with size
(
W/2l

)
×
(
H/2l

)
in the l-th layer. We

define the index sets straightforwardly using the pooling bins:
Jl,t = {m | 1 6 m 6 M ∧ lm ∈ Pl,t}. The number of index
sets is equal to the number of pooling bins,

∑L−1
l=0

(
2l
)2

, in
the L-layer SPM model.

3.2. Generalized Regular Spatial Pooling

The Generalized Regular Spatial Pooling (GRSP) algorithm
follows the basic rules of Spatial Pyramid Matching, but al-
lows the bins within the same pooling layer have either denser
or sparser distributions.

First let us still assume the bins in the l-th layer have size(
W/2l

)
×
(
H/2l

)
, i.e., this is the same setting as in the reg-

ular spatial pooling algorithm. Then we define a sequence
(s0 = 1, s1, s2, . . . , sL−1), which means that there are sl×sl
equal-sized pooling bins in the l-th layer. We put a pooling
bin with size

(
W/2l

)
×
(
H/2l

)
at the upper-left corner of the

image, move the bin along the axis of both sides of the im-
age, from upper-left to lower-right corner, and make sure that

Fig. 1. An example of original (left) and denser (right) spatial
pooling in the 1st layer (pooling bin size is W

2 ×
H
2 ). We set

s1 = 3, so that each pooling bin shares half of its pixels with
its neighboring bins.

Fig. 2. An example of original (left) and sparser (right) spatial
pooling in the 2nd layer (pooling bin size is W

4 ×
H
4 ). We

set s2 = 3, so that some regions on the image plane are not
occupied by any one of the pooling bins.

the spatial stride in each move is the same. When sl = 2l,
l = 1, 2, . . . , L− 1, the proposed method degenerates to S-
patial Pyramid Matching, otherwise the pooling bins would
become either denser (sl > 2l) or sparser (sl < 2l) on the
image plane. Figure 1 illustrates the denser spatial pooling
on the 1st-layer (s1 = 3), and Figure 2 illustrates the sparser
spatial pooling on the 2nd-layer (s2 = 3).

With the pooling bins, we can obtain the index set in the
same way as in regular pooling. The number of index sets
in GRSP is

∑L−1
l=0 s2l . When denser pooling is performed on

some layer, some local features could be summarized in more
than one bins, while sparser pooling might ignore a fraction
of the local features (not included in any bins).

3.3. Comparison to Previous Works

There are many works aimed at providing a better way of
spatial pooling beyond Spatial Pyramid Matching [1]. In [6],
smaller codebooks are computed for feature encoding in the
lower levels, while [21] and [22] suggests to combine sparse
coding and convolutional neuron networks, respectively, with



Table 1. Classification results of different parameters on four widely used image collections.
Case Enco- sl Feature Sport-8 Scene-15 Indoor-67 Caltech101
No. ding 0th 1st 2nd Dims Acc. (%) Acc. (%) Acc. (%) Acc. (%)
1 LLC 1× 1 2× 2 3× 3 28K 87.28 81.34 43.21 73.24
2 LLC 1× 1 2× 2 4× 4 42K 87.03 81.66 43.55 74.47
3 LLC 1× 1 2× 2 6× 6 82K 86.73 81.76 44.63 75.96
4 LLC 1× 1 2× 2 8× 8 138K 86.46 81.27 44.40 76.18
5 LLC 1× 1 3× 3 3× 3 38K 87.60 81.89 43.22 75.43
6 LLC 1× 1 3× 3 4× 4 52K 87.44 81.83 43.17 75.66
7 LLC 1× 1 3× 3 6× 6 92K 87.09 81.90 45.15 76.70
8 LLC 1× 1 3× 3 8× 8 148K 86.78 81.49 44.86 76.68
9 LLC 1× 1 4× 4 3× 3 52K 87.58 81.48 44.04 75.61
10 LLC 1× 1 4× 4 4× 4 66K 87.56 81.57 44.22 75.96
11 LLC 1× 1 4× 4 6× 6 106K 87.18 81.67 45.07 76.55
12 LLC 1× 1 4× 4 8× 8 162K 86.98 81.43 44.99 76.77

13 IFV 1× 1 2× 2 − 200K 90.82 87.54 61.22 80.73
14 IFV 1× 1 3× 3 − 400K 91.38 87.79 62.55 81.86
15 IFV 1× 1 4× 4 − 680K 91.16 87.75 62.57 82.04

spatial pooling methods to improve image representation.
Maybe the most relevant work to our idea is [7], in which
a number of possible bins are extracted on the image plane,
and it remains to select a small number of them which best
capture the spatial saliency of the images. In comparison with
previous works, Generalized Regular Spatial Pooling (GRSP)
is extremely simple: one needs only few lines of codes to
implement the GRSP algorithm, and extra time cost in the
feature extraction process is ignorable.

4. EXPERIMENTS

4.1. Datasets and Basic Settings

We report the classification accuracy on four widely used
image collections, i.e., the UIUC Sport-8 dataset [23] con-
taining 8 sporting scenes and 1579 images, and the Scene-15
dataset [1] containing 15 scenes and 4485 images, the MIT
Indoor-67 dataset [24] containing 67 indoor scenes and
15620 images, and the Caltech101 dataset [25] containing
9144 images of 102 classes. 70, 100, 80 and 30 images per
category are used as training samples.

The basic setting follows the recent proposed BoF mod-
els [10][11]. Images are scaled, with the aspect ratios p-
reserved, so that the larger axis is 600 pixels. We use the
VLFeat [28] library to extract dense RootSIFT [29] descrip-
tors. The spatial stride and window size of dense sampling
are 10 and 16 for all the datasets. The dimension of descrip-
tors are reduced to 80 using PCA in the case of IFV encod-
ing. We then cluster the descriptors with K-Means clustering
(K = 2048) and Gaussian Mixture Model (GMM, K = 256),
respectively, for the LLC [10] and IFV [11] encoding meth-
ods. The number of descriptors for clustering does not exceed

2 million. We use LLC and IFV algorithms to encode local
descriptors, and the encoded vectors are normalized individu-
ally within each spatial pooling bin [13]. The number of lay-
ers for spatial pooling is 3 for LLC encoding, and 2 for IFV
encoding. We will discuss the parameters of the Generalized
Regular Spatial Pooling algorithm in the next section. We use
LibLINEAR [30], a scalable SVM for evaluating the image
representation. For each dataset, we select a fixed number of
images per category for training the model, and test it on the
remaining images to calculate the average classification accu-
racy over all the categories. We repeat the random selection
10 times and report the averaged results.

4.2. Models and Parameters

In this section, we observe the impact of different parameters
in the Generalized Regular Spatial Pooling algorithm. The
results are summarized in Table 1.

First, we compare different settings used with LLC en-
coding [10]. One can see that, when we increase the number
of bins from 2 × 2 to 3 × 3 on the 1st layer, the classifica-
tion accuracy is usually improved (see case pairs (1, 5), (2, 6),
(3, 7), and (4, 8)). However, when the number is further in-
creased from 3× 3 to 4× 4, we only observe limited accura-
cy gain or even accuracy drop (see case pairs (5, 9), (6, 10),
(7, 11), and (8, 12)). This suggests that denser spatial pool-
ing bins do provide complementary information into image
representation, but using too many bins could also introduce
considerable redundance which actually harms the classifica-
tion accuracy. Similar discipline is also observed on different
numbers of pooling bins on the 2nd layer (see case groups
(1, 2, 3, 4), (5, 6, 7, 8), and (9, 10, 11, 12)). We benefit from
the complementary information by increasing the number of



Table 2. Comparison of our classification results with previous works.
Algorithm UIUC Sport-8 Scene-15 MIT Indoor-67 Caltech101
Yang et.al. [21] − 80.4 − 73.2
Bo et.al. [26] − − 51.2 82.5
Jia et.al. [7] − − − 75.3
Xie et.al. [12] 88.17± 0.78 83.77± 0.69 46.38± 0.75 78.14± 0.80
Kobayashi et.al. [27] 90.42 85.63 58.91 −
Wang et.al. (LLC) [10] 87.10± 0.82 81.66± 0.36 43.55± 0.63 74.47± 0.91
Ours (LLC + GRSP) 87.60± 0.73 81.89± 0.50 45.15± 0.46 76.70± 0.79
Perronin et.al. (IFV) [11] 90.82± 0.92 87.54± 0.58 61.22± 0.65 80.73± 0.82
Ours (IFV + GRSP) 91.38± 0.86 87.79± 0.59 62.55± 0.45 81.86± 0.94

pooling bins from 4 × 4 to 6 × 6, meanwhile suffer from the
redundance introduced by too many (8× 8) bins.

Similar discipline is also summarized from the results us-
ing IFV encoding [11]. To prevent the image-level features
have too high dimensionality, we only use two layers of bins
for spatial pooling. When the originally used 2× 2 grid is re-
placed by a 3×3 grid, the classification accuracy is improved
significantly, whereas the even denser 4×4 grid does not help
much in image representation.

It is also interesting to observe the relationship between
the number of pooling bins and the number of categories
in the dataset. In the UIUC Sport-8 dataset, there are only
few categories, therefore too high-dimensional feature vec-
tors might cause over-fitting. As the number of categories
increases, the benefit of using more pooling bins becomes
more and more significant. Taking the results using LLC
encoding as the example. On the UIUC Sport-8 dataset,
3 × 3 grid on the 2nd layer produces the best classification
accuracy, whereas on the Caltech101, recognition is more
accurate when the pooling bins are denser (e.g., 8 × 8 on
the 2nd layer). This suggests that in the large-scale datasets
such as Caltech256 [31], SUN-397 [32] or ImageNet [33], it
is instructive to use more pooling bins or even more pooling
layers for better image representation.

In conclusion, we use 1×1, 3×3 and 6×6 grids in the 3-
layer pooling model with LLC encoding, except for the UIUC
Sport-8 dataset in which 3×3 grid is used in the lowest (2nd)
layer. It produces 92K-dimensional feature vectors (except
for the UIUC Sport-8 dataset in which it is 38K), which is
about twice as long as original SPM vectors (1 × 1, 2 × 2
and 4 × 4 grids, 42K dimensions). With IFV encoding, we
use 1 × 1 and 3 × 3 grids in the 2-layer model on all the
datasets, producing 400K-dimensional feature vectors which
is of exactly twice length of original SPM vectors (1× 1 and
2× 2 grids, 200K dimensions).

4.3. Comparison with the State-of-the-Art

Here, we report the classification accuracy with some com-
petitors on all the four datasets. To make the comparison fair,

we only compare our algorithm to those only using grayscale
SIFT descriptors. As the proposed algorithm is focused on
spatial pooling, we do not compare the results with those
complex encoding algorithms. The results are listed in Ta-
ble 2. One can see that our algorithm achieves very competi-
tive classification performance, which outperforms the recent
published work [27] on all the scene recognition datasets.

5. CONCLUSIONS

In this paper, we aim at providing a better way of spatial
context modeling towards image understanding. We propose
Generalized Regular Spatial Pooling (GRSP), which general-
izes the Spatial Pyramid Matching (SPM) algorithm by allow-
ing the pooling bins have either denser or sparser distributions
on the image plane. Despite the simplicity of our model, it is
verified very efficient at several challenging image classifica-
tion tasks. In the future, we shall investigate the use of our
model on the large-scale datasets.
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