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Near-duplicate image search in very large Web databases has been a hot topic in recent years. In the tra-
ditional methods, the Bag-of-Visual-Words (BoVW) model and the inverted index structure are very
widely adopted. Despite the simplicity, efficiency and scalability, these algorithms highly depends on
the accurate matching of local features. However, there are many reasons in real applications that limit
the descriptive power of low-level features, and therefore cause the search results suffer from unsatisfied
precision and recall. To overcome these shortcomings, it is reasonable to re-rank the initial search results
using some post-processing approaches, such as spatial verification, query expansion and diffusion-based
algorithms.

In this paper, we investigate the re-ranking problem from a graph-based perspective. We construct
ImageWeb, a sparse graph consisting of all the images in the database, in which two images are con-
nected if and only if one is ranked among the top of another’s initial search result. Based on the Image-
Web, we use HITS, a query-dependent algorithm to re-rank the images according to the affinity values.
We verify that it is possible to discover the nature of image relationships for search result refinement
without using any handcrafted methods such as spatial verification. We also consider some tradeoff strat-
egies to intuitively guide the selection of searching parameters. Experiments are conducted on the large-
scale image datasets with more than one million images. Our algorithm achieves the state-of-the-art
search performance with very fast speed at the online stages.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

With more than twenty years’ efforts, content-based image re-
trieval (CBIR) has become a successful application in computer vi-
sion. It provides an effective way of bridging the intent gap by
analyzing the actual contents of the query image, rather than the
metadata such as keywords, tags, and/or descriptions associated
with the image. With compact image representation, it is possible
for the state-of-the-art Web image search engines such as Google
and Bing to handle billions of images and process each query with
real-time response.

To search among a large corpus of images, the Bag-of-Visual-
Words (BoVW) model [1] is widely adopted. The BoVW-based im-
age search framework contains two major stages, i.e., offline index-
ing and online searching. At the offline stage, local descriptors [2]
are extracted on the crawled images, quantized onto a large visual
vocabulary [3], and indexed into the inverted structure [1]. At the
online stage, local descriptors are also extracted on the query im-
age, and quantized into visual words to access the corresponding
entries in the inverted index. Finally, all the retrieved inverted lists
are aggregated as ranked search result.

Despite the simplicity, efficiency and scalability of the BoVW-
based image search framework, the search results often suffer from
the unsatisfied precision and recall. The main reasons arise from
the limited descriptive power of low-level descriptors and the con-
siderable information loss in the quantization step. In fact, the
accurate matching between local features could be highly unstable
especially in the cases of manual editing and geometric deforma-
tion or stretching, meanwhile there also exist a number of incor-
rect feature matches between some totally irrelevant images.
This may cause some relevant images to be ranked after the irrel-
evant ones. To improve the quality of initial search results, various
post-processing techniques are proposed to consider additional
clues such as the geometric location of local features [4], the extra
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features from the top-ranked images [5], and the affinity values
propagated between images [6]. Although all the methods are ver-
ified effective to improve the precision and/or recall of the search
results, the handcrafted manners of re-ranking limit them from
being generalized and scaled up in the Web environments.

In this paper, we investigate the image search problem from a
graph-based perspective, and discover a natural way of re-ranking
the initial search results without using handcrafted tricks. First, we
illustrate a small graph of near-duplicate images with distractors
in Fig. 1. In the image graph, two nodes are linked with each other
iff they share no less than 10 common features. Some relevant im-
age pairs are not matched since the local descriptors are quantized
into different visual words, whereas the low descriptive power of
low-level features also causes the false matches found between
some totally irrelevant pairs. Intuitively, given a near-duplicate
query image, the missing links between query and the relevant
images causes low recall, and the false matches between query
and the irrelevant images result in low precision. To overcome,
we claim that image-level matching is more reliable than fea-
ture-level matching, and make the following observations which
are pivotal to promote the relevant images and filter the irrelevant
ones.
Fig. 1. A toy example of near-duplicate image search with distractors (marked with blue
line segments, where green ones and red ones indicate correct and incorrect image matc
produce high-quality search results, especially on those difficult cases (marked in red box
referred to the web version of this article.)
� It is possible to access the missing true positives, i.e., relevant
images sharing few common features with the query, via con-
structing the indirect paths through other relevant images.
� For most queries, there are more true positives than false posi-

tives in the top-ranked search results. Therefore, it is possible to
adopt majority voting or affinity propagation algorithms to fil-
ter the false candidates.

Based on the intuitions above, we propose ImageWeb, a novel
data structure to capture the image-level context properties.
Essentially speaking, ImageWeb is a sparse graph in which each
image is represented by a node. There exist an edge from node Ia

to node Ib if and only if image Ib appears among the top of the ini-
tial search result of image Ia. Since the links in ImageWeb actually
imply the recommendation such as ‘‘Ia thinks Ib is relevant’’, it is
straightforward to adopt the query-dependent link analysis algo-
rithms, say, HITS [7], to re-rank the initial search results by propa-
gating affinities through the links. We verify that, with the efficient
discovery of image contexts, it is possible to achieve very accurate
search results even without using the handcrafted rules such as
spatial verification.
boxes). Images pairs sharing no less than 10 common features are connected with
hes, respectively. In such a noisy graph, it is difficult for the BoVW-based models to
es). (For interpretation of the references to colour in this figure legend, the reader is
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The major contributions of this work are summarized as
follows.

1. We propose an efficient data structure, ImageWeb, to discover
the high-level relationships of images. We carefully design the
construction, insertion and deletion algorithms to make the
data structure efficiency in real applications.

2. We provide a tradeoff strategy to guide the parameter selection
in the online searching process. By sacrificing the initial search
accuracy which could be compensated in the post-processing,
we achieve much better search performance with much lower
time complexity compared to the baseline methods.

3. A new near-duplicate dataset with 51 groups of famous car
logos are provided. There are many (more than 200) samples
in one near-duplicate group which is more similar to the Web
environments. Our algorithm works very well in this dataset,
demonstrating its good transportability to real-world
applications.

The remainder of this paper is organized as follows. First, we
formulate a general pipeline for image search in Section 2. In Sec-
tion 3, we introduce ImageWeb, an efficient data structure to cap-
ture the image-level relationships, and use ImageWeb to re-rank
initial results in the large-scale image search problems. Section 4
follows to provide a tradeoff strategy for parameter selection in
the online search process. After studying the search performance
in two challenging databases in Section 5, we draw the conclusions
in Section 6.
2. The image search pipeline

In this section, we provide a brief overview of the image search
pipeline based on the Bag-of-Visual-Words (BoVW) model and the
inverted index structure.

2.1. The Bag-of-Visual-Words model

The Bag-of-Visual-Words (BoVW) model represents each image
as a set of visual words. It starts with an image I ¼ ðaijÞH�W , where
aij is the pixel on position ði; jÞ.

Due to the limited descriptive power of raw image pixels, a
number of regions-of-interest (ROI) are detected using operators
such as DoG [2], MSER [8] or Hessian Affine [9], and the local
descriptors are calculated on the ROIs to give a basic representa-
tion of local patches. Popular descriptors for image retrieval in-
clude SIFT [2,10], SURF [11], BRIEF [12] and so on. Each
combination of detector and descriptor yields a set of descriptors
D:

D ¼ ðd1; l1Þ; ðd2; l2Þ; . . . ; ðdM ; lMÞf g; ð1Þ

where dm and lm denote the description vector and the correspond-
ing location of the mth descriptor, respectively. M is the total num-
ber of descriptors, which could be hundreds or even thousands in
common images.

After descriptors have been extracted, they are often quantized
into visual words to be compact. There are generally two ways of
transforming descriptors into visual words. The first method, Vec-
tor Quantization (VQ), requires training a codebook using cluster-
ing methods [1]. In image search tasks, K is often rather large, e.g.,
more than one million, and it could be computationally intractable
to compute the accurate (exact) K-Means clustering. Therefore, the
hierarchical [3] or approximate [13] versions of K-Means are often
adopted for efficiency. After codebook construction, descriptors are
quantized into visual words. Given a codebook with B codewords,
hard quantization strategy produces a unique number fm (from 0
to B� 1), which is the ID of the nearest (most similar) codeword of
descriptor dm. Oppositely, soft assignment maps dm onto a sub-
space spanned by several codewords [14], giving a few different
word IDs as well as their weights. In most cases, soft quantization
produces more accurate feature matches but also requires more
computational resources. We denote the quantization result of
dm as fm, which is a sparse, ‘1-normalized vector with K dimen-
sions, and each nonzero dimension represents the weight of the
corresponding codeword.

The second approach, Scalar Quantization (SQ) [15], binarizes
each descriptor bin directly without training a codebook. Given a
SIFT descriptor dm (D ¼ 128):

dm ¼ dm;1;dm;2; . . . ;dm;Dð Þ ð2Þ

a transformation function is defined to quantize dm into a bit vector
(all elements are either 0 or 1) fm directly:

fm ¼ fm;1; fm;2; . . . ; fm;2Dð Þ ð3Þ

Here, the visual word fm is twice the length of descriptor dm,
which implies that 2 bits are used to encode each bin of dm. Follow-
ing [15], fm is calculated in a bitwise manner. For j ¼ 1;2; . . . ;D,

fm;j; fm;jþD
� �

¼
ð1;1Þ; if d̂H

m < dm;j

ð1;0Þ; if d̂L
m < dm;j 6 d̂H

m

ð0;0Þ; if dm;j 6 d̂L
m

8>><
>>:

ð4Þ

d̂H
m and d̂L

m are high and low thresholds, respectively, which are de-
fined by sorting the elements of dm in ascending order:

dS
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d̂H
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2
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In the Scalar Quantization framework, the comparison of
descriptors in ‘2-distance is captured by the Hamming distance be-
tween the corresponding 2D-bit binary vectors.

Of course, more quantization methods such as metric learning
[16,17], dimension reduction [18,19] could also be adopted to en-
code the descriptors. After quantization, a set of visual words are
obtained:

F ¼ ðf1; l1Þ; ðf2; l2Þ; . . . ; ðfM ; lMÞf g: ð8Þ

Meanwhile, the set of local descriptors are not used in the later
steps. Although the computation with visual words are much more
effective, the quantization step might discard considerable infor-
mation, which might cause some irrelevant descriptors projected
onto the same visual word. This further weaken the descriptive
power of local features.

Besides local descriptors, there are also efforts to represent an
image with their global properties. Such holistic features, such as
GIST [20] or visual attributes [21], are verified effective to encode
the images with relatively smaller number, usually less than a
few thousand, of bits. It is acknowledged that global features could
serve as a good compensation to local ones, and they are especially
useful when retrieving images with close semantics but are not
near-duplicate [22–24]. Similar to the classification models com-
bining multiple sources of features [25], local and holistic features
have also been integrated in the image search tasks to boost the
search performance [26,27]. Since this paper focuses on near-
duplicate image search, we do not adopt holistic features in our
system.
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2.2. The inverted index structure

In large-scale image search, the feature matching problem could
be formulated as finding features’ approximately nearest neigh-
bors. When the number of features becomes very large, say, over
1 billion, we need an efficient data structure to organize them so
that we can search them in a very short time. To address the prob-
lem, we leverage from information retrieval [28] to use the in-
verted index [13,4] as a scalable indexing structure for storing a
large corpus of images with their features. In essence, the inverted
index is a compact representation of a sparse matrix, whose rows
and columns denote features and images, respectively. The offline
indexing stage maps each unique codeword onto an entry followed
by a list of units, in which we store the ID of the image where the
visual word appears, and some other clues for verification, e.g.,
location of the feature. Moreover, each feature could also be as-
signed with the IDF score [28] or ‘p-IDF score [29], which is used
to indicate the feature importance (discriminative power) in the
whole corpus.

The ways of indexing visual words in Vector Quantization and
Scalar Quantization are also different. Vector Quantization pro-
duces a single ID or a group of (weighted) IDs for each descriptor,
which could be used as the address of the inverted index entry di-
rectly. In contrast, the output of Scalar Quantization is a 2D-bit bin-
ary vector. We take its first t bits as a natural codeword to access
the entry, and store the remaining 2D� t bits as well as the image
ID in the indexed unit. It is worth noting that, although the total
amount of possible codewords is 2t , which could be as many as
4G when t ¼ 32 [15], the number of valid codewords (with non-
empty lists) is much smaller (80M in experiments). Therefore it
is possible to allocate an entry for each codeword and use hashing
to map the codewords onto index entries.

2.3. Searching process

Given a query image Iq, local descriptors are also extracted and
quantized into visual words. Then the searching process finds the
corresponding entry of each encoded feature and retrieve the fol-
lowed lists. Finally, the retrieved images are ranked by their fre-
quencies of occurrence or accumulated IDF scores. The
performance of such a naive searching process depends highly on
the accuracy of feature matches. However, due to the limited
descriptive power of local descriptors and the information loss in
the quantization step, the simple counting method often suffers
from unsatisfied precision and recall. To improve the quality of
search results, various types of post-processing algorithms are
used, including spatial verification, query expansion, and/or
diffusion-based methods.

It is verified in many works that spatial contexts are useful for
filtering false positive results. Therefore, spatial verification
[13,5,30] is proposed to boost the precision by checking the rela-
tive geometric locations of the matched features. For example,
[5] considers weak geometric consistency to quickly filter potential
false matches, [13] performs global spatial verification based on a
variation of RANSAC, and [31,32] adopts a geometric coding
scheme by encoding the relative spatial locations within a compact
binary code. In [33,34], the authors propose visual phrases as more
robust feature groups for filtering false matches.

Query expansion [4,35,36], leveraged from text retrieval, reis-
sues the initial top-ranked results to find valuable features which
are not present in the original query. The enriched feature set is
helpful to boost the recall of search systems. Typical query expan-
sion techniques include transitive closure expansion [4], intra- and
inter-expansion [35], automatic failure recovery [36] and so on. In
the Scalar Quantization algorithm [15], a spacial approach is
adopted for query expansion. The goal is to find the matched visual
words (256-bit binary codes) with the Hamming distance no larger
than j. Recall that each visual word in the database is indexed by
the first t ¼ 32 bits. For each querying feature, the first t bits are
also extracted as the querying codeword. The inverted lists with
codewords no more than d Hamming distance to the querying
codeword are visited, and each of the features in the lists are
checked if the total Hamming distance (on 256 bits) to the query-
ing feature are no more than j. It requires visiting Q ¼

Pd
s¼0

t
s

� �
in-

verted lists. We name d and j the codeword expansion threshold
and Hamming threshold, respectively. Note that a larger expan-
sion threshold often results in heavier enumeration (larger Q)
and therefore higher time complexity.

In image search, it is also straightforward to propagate affinities
or beliefs via the connection of objects. Based on global image
matching, it is feasible to establish an image network [6], and cal-
culate the affinity scores of image candidates in the initial search
results. For example, [37,6,38] explore the use of content-based
features to improve the quality of text-based image search results,
and [39] mines both context and content links in social media net-
works to discover the underlying latent semantic space. In [27], the
relationship between images are presented using a graph-based
data structure, which is also exploited in [40] for exploring image
collections based on global topological analysis.

The proposed ImageWeb algorithm is an efficient implementa-
tion of diffusion methods. Different from the related work, Visual-
Rank [6], which adopts PageRank to improve text-based image
retrieval, we leverage the query-dependent HITS algorithm into
the content-based image retrieval task with clear intuitions. We
shall also highlight the superior performance and fast online
searching speed as our contributions.
3. The ImageWeb

This section illustrates ImageWeb for re-ranking images to im-
prove the initial search quality. We shall first introduce the intui-
tion originating from the document retrieval community, and
then present the construction, updating and searching algorithms
of ImageWeb. Finally, we discuss the scalability of ImageWeb by
analyzing its time and memory consumptions.
3.1. Document search and link analysis

Document search engines play an important role on the World
Wide Web (WWW). A search engine typically consists of three ma-
jor stages. First, webpages are found by a Web crawler, an auto-
mated Web browser which follows every link on the websites.
The retrieved webpages are then stored in an index database for
later use. When a user types in the querying keywords, the engine
looks up the index and retrieves a list of best-matched web pages
according to some criteria. While there may be millions of webpag-
es that include the querying keywords, some pages may be more
relevant, popular, or authoritative than others. Most search engines
employ link analysis to rank the retrieved webpages and return the
best ones to the users.

To measure the quality of webpages, many link analysis algo-
rithms explore the internal structure of the Web, and use random
walk, a mathematical formulation to calculate the affinity values
[41] of the pages. The most popular link analysis algorithms in-
clude PageRank [42] and HITS [7]. Both of them assume that high
quality websites are likely to receive more links from other web-
sites. and the quality of a webpage could be roughly estimated
by accumulating affinities from the pages linking to it. Both Page-
Rank and HITS could be computed either intuitively with iteration
methods, or mathematically using eigenvectors.
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PageRank [42] assigns a numerical weight w 2 ð0;1Þ to each ele-
ment of the Web. which is a probability representing the likelihood
that a person randomly clicking on links will arrive at the particu-
lar page. In each iteration, each node distribute its weight through
its outgoing links and re-collects weight from the incoming links.
Since we set equal weights on each page at the beginning of the
algorithm, the final results of PageRank is a reflection of the Web’s
intrinsic structure, and therefore independent to any specified
queries.

As a precursor of PageRank, HITS [7] algorithm, or known as
Hubs and Authorities, also assigns numerical weights h; a 2 0;1ð Þ
named hubs and authorities to each webpage, which stems from
a particular insight into the creation of webpages when the Web
was originally forming. In each iteration, the authority values are
first updated using the hub values, and the hub values are then up-
dated using the new version of authority values. Different from
PageRank, HITS starts with a given query, and the hub and author-
ity values of the query are set to 1 while others are 0. Therefore,
HITS is a query-dependent algorithm.
3.2. ImageWeb: definition and construction

The key assumption of the link analysis algorithms in document
retrieval is that one webpage Pa contains a link to another one Pb if
Pa suggests that Pb is of high quality. In order to leverage those
algorithms into the image search problems, we organize the
images in the database with a graph model, in which each image
is represented by a node, and there exists a link from image Ia to
Ib if Ib is ranked among the top in the (initial) search results of Ia.
The same assumption also holds in the constructed network of
images. One image Ia contains a link to another one Ib implies that
Ib is more likely to be relevant to Ia.

Formulating the basic idea above yields the definition of Image-
Web, a data structure for organizing image-level relationships.
Suppose we have a large-scale image database I ¼ I1; I2; . . . ; INf g,
where N is the total number of images which could be over one
million in real applications. ImageWeb is a directed graph
G ¼ V; Ef g. V ¼ v1;v2; . . . ; vNf g is the set of nodes, and vn is the cor-
responding node of image In for n ¼ 1;2; . . . ;N. E is the set of edges
connecting between nodes, and there is an directed edge from vn1

to vn2 iff In2 appears among the top-K (initial) search results of In1 .
Here K, an integer much smaller than N, is named the breadth of
the ImageWeb G. There is also a weight assigned to each edge of
the ImageWeb, indicating the importance of the edge. In any time,
the outgoing links of any node are ranked according to their
weights, and the weights of the node are normalized so that their
sum equals to 1. The algorithm of constructing ImageWeb is illus-
trated in Fig. 2.
Fig. 2. The general steps o
In real applications, the image database might change with
time. Newly retrieved images might be added, while some out-
dated or illegal images should be removed from the database.
Therefore, it is necessary for the ImageWeb to support efficient
insertion and deletion operations. The main difficulties of image
insertion and deletion arise from updating the outgoing links of
images that are already in the database before insertion or pre-
served after deletion. Re-calculating the outgoing links for all the
images is a natural solution, but it could be computationally intrac-
table if we re-construct the whole ImageWeb after each modifica-
tion of image database. Here, we adopt the approximated updating
algorithm, in which we only check and update those images that
are linked by the inserted/deleted images. The complete re-calcu-
lation of one image’s outgoing links is only called when necessary,
i.e., the number of outgoing links is less than a threshold, say, 0:8 K.
Since the approximated updating algorithm might cause the
ImageWeb more and more inaccurate, we can re-construct the
whole ImageWeb after a relatively long period of time. The inser-
tion and deletion algorithms are illustrated in Figs. 3 and 4,
respectively.

3.3. ImageWeb: link analysis

Fig. 5 illustrates two nodes in a toy ImageWeb (K ¼ 10) con-
structed on 1104 images. We present an example for the easy
and difficult queries, respectively. It is worth noting that K is usu-
ally a very small number relative to the size of database, therefore
we are actually not storing all the true positives to each query in
the ImageWeb. The ImageWeb only provides a pre-calculated net-
work structure for improving the quality of online search results.

The link analysis algorithm on the ImageWeb is aimed at filter-
ing the top-ranked false positives for each query. Here, we benefit
from the fact that all the true positive images contain the same
near-duplicate concept, and it is more probable to find effective
feature matches between them, i.e., they are more likely to appear
among others’ outgoing links (top-ranked candidates). Even when
we consider the relatively more difficult case in Fig. 5, in which
more false positives (6 out of 10) are found in the top-ranked re-
sults, we can see that 6 false samples come from 6 different
near-duplicate groups, therefore they are not likely to be con-
nected with each other very closely.

The above observations inspire us to adopt the affinity propaga-
tion algorithms for image re-ranking. Given a query image, we ex-
tract all its visual words to look up the inverted index, and obtain a
N-dimensional vector representing the number of feature matches
between the query and each candidates. Normalizing the vector
yields a probability distribution over all the images
w0 ¼ w0;1;w0;2; . . . ;w0;Nð Þ satisfying

P
nw0;n ¼ 1. We take this dis-

tribution as the initial hub values of all the images, and adopt
f building ImageWeb.



Fig. 3. The general steps of inserting images into ImageWeb.

Fig. 4. The general steps of deleting images from ImageWeb.
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the HITS algorithm [7] on the ImageWeb G to update authority and
hub values of all the images iteratively for R rounds. R is named the
depth of link analysis, which means that after R iterations, we
could retrieve all the candidates that the query-candidate shortest
path is not longer than R in the ImageWeb. We do not always iter-
ate the weighting till convergence for the consideration of time
consumption. The algorithm is formulated in Fig. 6.

3.4. Time and memory complexity

In this part, we focus on the time and memory consumptions
caused by the ImageWeb algorithms. We ignore the time used at
descriptor extraction, quantization and indexing stages, and the
memory cost for indexing millions of images into and inverted file
structure.

The time overhead of the ImageWeb algorithms consist of
two parts, offline construction and online searching. The main
part of offline time is used in the initial searching process, and
is highly related to the BoVW model adopted to construct the
ImageWeb. In practise, we use the Scalar Quantization [15] to
generate the initial results. Suppose there are N images in the
database, each image contains M features, and each feature is
expanded Q times in initial search process, then each image re-
quires OðMQaÞ time to access the inverted index, and
OðN logðNÞÞ time for sorting the candidates. Here, a is the aver-
age number of features indexed after each entry. In real applica-
tions, we have MQ < N and a � logðNMÞ < 2 logðNÞ, therefore the
time complexity for constructing the ImageWeb is OðN2 logðNÞÞ,
Moreover, it requires OðN logðNÞÞ time to insert an image into
the ImageWeb or delete an image from the ImageWeb (ignoring
the sparsely called re-search operations in image deletion). In
our experiments (see Section 5), N is larger than 106, and we
use parallelization methods to accelerate the construction pro-
cess. Considering the operation is required only once, the time
complexity is affordable.

The online stage requires OðN logðNÞÞ operations for initial
searching, and an R-round HITS algorithm consisting of 2NKR float-
ing number calculations. With different settings of parameters, i.e.,
codeword expansion threshold d, Hamming threshold j (see Sec-
tion 2.2), ImageWeb breadth K and depth R, the time cost of online
stage could vary from tens of milliseconds to tens of seconds. It is a
challenge to accelerate the algorithm without harming the search
accuracy. We will cope with this problem in Section 4.

The memory cost of the ImageWeb comes from the storage of
each image’s K top-ranked candidates in the ImageWeb. It costs
8 bytes to store one candidate (4 bytes for image ID and 4 bytes
for score). We set K ¼ 20 for the best performance of searching
process (see Section 4.2), therefore the total memory cost on a sin-
gle image is 160 bytes. In total, we need 160 Megabytes to store the
ImageWeb with one million images, which is much smaller than 4
Gigabytes used for loading the inverted index of one millions
images.
4. The tradeoff strategy for parameter selection

This section is aimed at finding a proper set of parameters for
the online searching process. For this, we adopt two intuitive
tradeoff strategies to guide the parameter selection, one between
precision and recall, and the other between time complexity and
search accuracy. Finally, accurate search results are achieved with
very low time consumptions.

We start with introducing the basic settings used in our
experiments.

4.1. The experimental settings

We use Scalar Quantization (SQ) [15] as the baseline system.
Based on the initial search results provided by SQ, we construct
ImageWeb for post-processing. To make fair comparison, we keep
the same settings as the baselines.

� Descriptor extraction. We use the SIFT descriptors [2] calculated
on the Regions of Interest detected by DoG operators [2]. All the
images are greyscale, and resized so that the larger axis size is
300.
� Descriptor quantization. We use Scalar Quantization (SQ) [15]

formulation (4) to encode each 128-D SIFT descriptor into a
256-bit binary code.



Fig. 5. Two nodes with outgoing links (K ¼ 10) of a toy example of ImageWeb (N ¼ 1104). Images on the right side are ranked according to the number of feature matches
(numbers in parenthesis) to the query image. The false positives in the outgoing links are marked with red boxes. The above node shows an easy query, in which only one
false positive is found among the top-10 candidates, while the bottom one is relatively more difficult, in which six false positives are ranked among top-10. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. General steps of HITS calculation in ImageWeb.
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� Indexing. The first 32 out of 256 bits of each visual word are
taken as the indexing address. Image ID as well as the remain-
ing 224-bit binary codes are stored in the inverted index. We
remove the features which appear in more than N1=3 images
where N is the number of images in the whole corpus.
� Online searching. We follow the basic searching process of Scalar

Quantization [15] to obtain the initial scores. The HITS algo-
rithm is then performed on a pre-constructed ImageWeb. The
impact of searching parameters will be discussed thoroughly
in this section.
� Accuracy evaluation. We use the mean average precision (mAP)

to evaluate the accuracies of all methods.

There are several adjustable parameters that affect the online
searching stage, including the codeword expansion threshold d
and the Hamming threshold j in the initial searching process
(Section 2.3), and the ImageWeb breadth K and depth R (see Sec-
tion 3). The different sets of parameters could result in contrasting
search accuracies and time costs, and our goal is to find a proper
set of parameters producing accurate search results very effi-
ciently. It is obviously very difficult to enumerate all the possible
parameter combinations and choose the best one. Therefore, we
adopt an intuitive tradeoff strategy to help us find a proper set of
parameters.

Throughout this section, we report the mAP values and time
costs on the DupImage dataset [31] with one million distractors.
The detailed information of this dataset could be found in
Section 5.1.

4.2. Tradeoff between precision and recall

First we consider the setting of breadth K and depth R in the
ImageWeb. A larger K causes more top-ranked candidates is stored
in the ImageWeb structure, and a larger R implies that affinity val-
ues are propagated through more iteration rounds. Intuitively, the
increase of K and R helps to improve the recall and precision,
respectively. As shown in [43,5], there always exists a precision-re-
call tradeoff in both document and image search systems. For
example, decreasing the stopword threshold, i.e., more visual
words are stopped, produces more accurate feature matching to
improve the search precision, but also rejects some correct
matches and therefore degrades the recall.
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Fig. 7. Performance comparison with respect to different settings of breadth and
depth of the HITS algorithm. The mAP values are recorded for each combination of
depth R ¼ 1;2;3;5;10;20 and breadth K ¼ 5;10;20;50;100. Experiments are
performed on the DupImage dataset (see Section 5.1) mixed with one million
distractors.

Table 1
We list the parameters, searching time and accuracy (mAP) to illustrate the tradeoff
between initial search and post-processing. d;j;K and R are codeword expansion
threshold, Hamming threshold, ImageWeb breadth and depth, respectively. t1; t2

and T are the time (in milliseconds) used in initial search, post-processing and the
whole search process.

d j K R t1 t2 t2=T (%) mAP

0 16 0 0 50 0 0:00 0:143
0 16 10 5 50 16 24:24 0:693
0 16 10 10 50 31 38:27 0:728
0 16 20 5 50 30 37:50 0:731
0 16 20 10 50 60 54:55 0:752
1 16 0 0 80 0 0:00 0:428
1 16 10 5 80 16 16:67 0:724
1 16 10 10 80 31 27:93 0:742
1 16 20 5 80 30 27:27 0:737
1 16 20 10 80 60 42:86 0:755
2 16 0 0 460 0 0:00 0:515
2 16 10 5 460 16 3:36 0:733
2 16 10 10 460 31 6:31 0:753
2 16 20 5 460 30 6:12 0:749
2 16 20 10 460 60 11:54 0:757
3 16 0 0 4240 0 0:00 0:537
3 16 10 5 4240 16 0:38 0:741
3 16 10 10 4240 31 0:73 0:756
3 16 20 5 4240 30 0:70 0:756
3 16 20 10 4240 60 1:40 0:762

0 24 0 0 54 0 0:00 0:161
0 24 10 5 54 16 22:86 0:699
0 24 10 10 54 31 36:47 0:726
0 24 20 5 54 30 35:71 0:730
0 24 20 10 54 60 52:63 0:756
1 24 0 0 86 0 0:00 0:451
1 24 10 5 86 16 15:69 0:726
1 24 10 10 86 31 26:50 0:745
1 24 20 5 86 30 25:86 0:744
1 24 20 10 86 60 41:10 0:758
2 24 0 0 477 0 0:00 0:542
2 24 10 5 477 16 3:25 0:731
2 24 10 10 477 31 6:10 0:756
2 24 20 5 477 30 5:92 0:752
2 24 20 10 477 60 11:17 0:761
3 24 0 0 4320 0 0:00 0:563
3 24 10 5 4320 16 0:37 0:744
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To be clear, we test different combinations of K and R, and plot
the mAP values under different settings in Fig. 7. It is easy to ob-
serve that the mAP value does not always increase when the
breadth and depth go up, although large breadth and depth help
to improve the recall and precision of search results, respectively.
In fact, if K becomes too large, a considerable number of false pos-
itives would be introduced into the ImageWeb, which would harm
the precision of link analysis algorithm. On the other hand, an im-
proper value of R could also cause the search accuracy drop. There-
fore, we can conclude that individually maximizing precision or
recall does not provide the best overall performance. The highest
mAP value is achieved using the compromised parameters, i.e.,
K ¼ 20 and R ¼ 10.
3 24 10 10 4320 31 0:71 0:755
3 24 20 5 4320 30 0:69 0:759
3 24 20 10 4320 60 1:37 0:764
4.3. Tradeoff between initial search and post processing

Next we configure the setting of codeword expansion thresh-
old d and Hamming threshold j in initial searching. We report the
search accuracy and query time obtained with different sets of
parameters in our algorithm, where the time percentages used in
initial search and post-processing are recorded, respectively. We
list a part of the data in Table 1. When K ¼ R ¼ 0 (no post-process-
ing), the search accuracy does increase significantly with the code-
word expansion threshold d, since a larger expansion threshold
helps to capture more possibly matched features in the expanded
searching. The major shortcoming of a large d value is the consid-
erable time use at the online searching stage, i.e., we need about
500 ms to process a query when d ¼ 2, and even more than 4 s
when d ¼ 3. Fortunately, the ImageWeb is verified as a good com-
pensation to the inaccurate initial searching process. With Image-
Web re-ranking algorithms, we can obtain excellent performance
even based on very poor initial results (see Table 1, from about
0:15 to higher than 0:75). Moreover, ImageWeb bridges the accu-
racy gap between small and large d values. Under proper setting
of breadth R ¼ 10 and depth K ¼ 20, the mAP difference between
d ¼ 0 and d ¼ 3 decreases from about 0:40 to no more than 0:01.
Considering that d ¼ 0 only requires 50 ms for initial searching,
which is merely 1% of using d ¼ 3, it is quite instructive to adopt
it to shorten the time of online searching.

We provide an explanation to the parameter selection using the
well-known marginal utility. Suppose we have fixed the total time
cost in the online searching process (including initial searching and
post-processing), then it is unadvisable to spend too large fraction
in either initial or post processing stage. When we choose
d ¼ 0;j ¼ 16 and K ¼ 20;R ¼ 10, the initial and post processing
stages would require 50 ms and 60 ms for each query, respectively.
The total searching time, 110 ms, is even much shorter than the
baseline system (480 ms). We shall inherit these parameters in
the later experiments.

5. Experimental results

We compare our algorithm with the following popular
methods:

1. HVVT [3] is the original BoVW-based framework with Hierar-
chical Visual Vocabulary Tree. We train a codebook with one
million leaf codewords (6 layers, at most 10 branches at each
node).

2. HE [5] uses Hamming Embedding to filter the candidate fea-
tures which are quantized to the same codeword but have large
Hamming distances to the query feature. The threshold for
Hamming distance is selected as 20 for the best performance.



Fig. 8. Sample images from the DupImage dataset.
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Fig. 9. Performance comparison on the DupImage dataset with different numbers
of distractors.

1 This dataset is publicly available online. Type ’CarLogo-51 dataset’ for searching.
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3. RANSAC [13] performs image re-ranking after initial search via
geometric verification, which is based on the estimation of an
affine transformation by a variant of Random Sampling
Consensus.

4. SA [14] exploits Soft Assignment to identify a local descrip-
tor with a representation of nearby codewords. For the accu-
racy-efficiency tradeoff, we set the error bound in the k–d
tree as 5.

5. SQ [15] gives an efficient image search flowchart based on code-
book-free Scalar Quantization (4). Next, the features are
indexed by their first 32 out of 256 quantized bits. Following
[15], we select the codeword expansion threshold d ¼ 2 and
Hamming threshold j ¼ 24.

6. GC [31] adopts a geometric coding scheme for local feature
match verification by encoding the relative spatial locations
among features within an image and discovering false feature
matches between images.
5.1. The DupImage dataset

The DupImage dataset [31] contains 1104 images from 33
groups, including logos (e.g., ‘Starbucks’, ‘KFC’), pictures (e.g., ‘Sailor
Kiss’), paints (e.g., ‘Mona-Lisa’) and other near-duplicate signs.
Samples images are shown in Fig. 8. We mix the dataset with
one million distractors crawled from the Internet. To evaluate the
performance with respect to the number of distractors, we con-
struct 4 smaller subsets of distractors by random sampling. The
sizes of the subsets are 50 K;100 K;200 K and 500 K, respectively.
We evaluate our algorithm as well as 6 baseline systems on the
5 different sizes of datasets, and record the mAP values and the
time costs per query for comparison.

The mAP values are plotted in Fig. 9. It is observed that our ap-
proach significantly outperforms all the other methods on all the
reported sizes of datasets. With one million distractors, the best
candidate system, SQ [15], gives a 0:542 mAP. Our approach hits
0:752, giving a relatively 38:7% improvement over SQ.

5.2. The CarLogo-51 dataset

We manually collect and label the CarLogo-51 dataset, which
contains 51 categories of car logos. 1 There are at least 200 images
in each category and the total number of images is 11903. Samples
images are shown in Fig. 10. We also mix the basic set with
10 K;20 K;50 K;100 K, 200 K;500 K and 1 M distractors,
respectively.

The mAP values are plotted in Fig. 11. Again our algorithm beats
all the competing algorithms significantly, and enjoys a surpris-
ingly 102% relative improvement of mAP value (0:426) over SQ
(0:211), the best candidate search system, with one million
distractors.

5.3. Time cost

The offline stages of our algorithm are the same as Scalar Quan-
tization [15], which takes roughly 200 ms for processing one image
including descriptor extraction, quantization and indexing. Here
we mainly report the time costs in two stages: ImageWeb con-



Fig. 10. Sample images from the CarLogo-51 dataset. Green boxes indicate standard logos, and red ones are difficult cases. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Performance comparison on the CarLogo-51 dataset with different num-
bers of distractors.

Fig. 12. Time cost (in kiloseconds) of constructing ImageWeb with respect to the
size of image database.

Fig. 13. Average querying time (in milliseconds) of different methods on the
database with one million images.
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struction and online searching. The theoretical analysis of time
complexity could be found in Section 3.4.

We plot the required time to construct ImageWeb with respect
to the number of images in Fig. 12. The construction algorithm is
highly parallelizable. Considering the offline construction of
ImageWeb is performed only once, the time cost (less than one
day for one million images) is affordable.

The average time cost on each query of different approaches are
plotted in Fig. 13. Our algorithm needs only 110 ms to process one
query, which is faster than all the comparison algorithms except
[5], and even more than 4 times faster than the baseline system,
Scalar Quantization [15]. In fact, our algorithm benefits from the
much looser initial search parameters, i.e., we use d ¼ 0 and
j ¼ 16 while [15] uses d ¼ 2 and j ¼ 24, which immediately cuts
the initial search time down to one tenth (from 480 ms to about
50 ms). Considering the supreme search performance we obtain,
the low time complexity is really surprising and exciting.
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6. Conclusions

In this paper, we investigate the near-duplicate Web image
search problem, and propose a novel solution for refining the initial
search results. We observe that the shortcoming of BoVW-based
image search framework arises from the limited descriptive power
of local features, and claim that the image-level matches are more
reliable than the feature-level matches. From a graph-based per-
spective, we propose ImageWeb, an efficient data structure to cap-
ture images’ context properties, and adopt HITS, a query-
dependent re-ranking algorithm, to bring order into the Image-
Web. An intuitive tradeoff strategy is also introduced to guide
the parameter selection at the online searching stage. Experimen-
tal results on the large-scale image search datasets reveal that our
algorithm achieves significant accuracy improvement with even
much lower time complexity compared to the baseline system.
Moreover, our algorithm is highly scalable, as the time and mem-
ory overheads are both linear to the size of the image corpus.
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