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ABSTRACT
The Bag-of-Features (BoF) model has played an important
role for image representation in many multimedia applica-
tions. It has been extensively applied to many tasks includ-
ing image classification, image retrieval, scene understand-
ing, and so on. Despite the advantages of this model such
as simplicity, efficiency and generality, there are also notable
drawbacks for this model, including poor power of semantic
expression of local descriptors, and lack of robust structures
upon single visual words. To overcome these problems, vari-
ous techniques have been proposed, such as multiple descrip-
tors, spatial context modeling and interest region detection.
Though they have been proven to improve the BoF model to
some extent, there still lacks a coherent scheme to integrate
each individual module.

To address the problems above, we propose a novel frame-
work with spatial pooling of heterogeneous features. Our
framework differs from the traditional Bag-of-Features model
on three aspects. First, we propose a new scheme for com-
bining texture and edge based local features together at the
descriptor extraction level. Next, we build geometric visual
phrases to model spatial context upon heterogeneous fea-
tures for mid-level representation of images. Finally, based
on a smoothed edgemap, a simple and effective spatial weight-
ing scheme is performed on our mid-level image representa-
tion. We test our integrated framework on several bench-
mark datasets for image classification and retrieval applica-
tions. The extensive results show the superior performance
of our algorithm over state-of-the-art methods.
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1. INTRODUCTION
Today, there are many multimedia applications based on

image understanding and processing, such as image retrieval,
image classification, scene understanding, and so on. Al-
though different tasks vary in their goals, they share a key
idea seeking for discriminative representations of images.

Traditional Bag-of-Features (BoF) framework has been
widely used for various image applications mentioned above.
It aims at providing better representations for images. For
this purpose, local descriptors such as SIFT [16] are ex-
tracted from images, and a codebook is built upon all de-
scriptors, depressing noises and forming a semantic visual
vocabulary for the dataset. Finally, descriptors are quan-
tized onto the codebook, and visual words are pooled for a
statistical representation of the original image.

Despite the great success of BoF framework, there still
exist many drawbacks in it. These drawbacks come mainly
from the well-known semantic gap [17] between low-level
local descriptors and high-level image semantics. Many re-
searchers such as Yuan et.al [24] have noticed that SIFT
descriptor suffers from both synonymy and polysemy. To
overcome, the following schemes are widely adopted.

• Different descriptions of local patches. For single
descriptors might fail to capture the rich information
within local patches, it is reasonable to extract multi-
ple descriptors for compensation. Various descriptors
represent local patches from different aspects, provid-
ing more descriptive and discriminative information.
By simply concatenating appearance and shape fea-
tures together, [2] outperforms state-of-the-art models
using single descriptors by a margin.

• Mid-level representation connecting low-level
and high-level concepts. In BoF framework, an
image is represented as a large set of visual words.
However, there is a big semantic gap between low-
level features and high-level concepts [17]. Therefore,
many researchers have proposed some mid-level rep-
resentations, such as macro-descriptors [3] or visual
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phrases [24], for better image understanding. Both of
them bridge the semantic gap to some extent.

• Spatial weighting of images. Not all regions on
a natural image are really useful for representation.
Background clutters might bring in noises, which are
harmful to training robust models. Therefore, detec-
tion of Regions of Interest (ROI) is usually proposed.
Using a simple rectangular bounding box, [2] gives bet-
ter representation on the less aligned datasets.

Based on these observations, we propose several novel al-
gorithms from new aspects. With the help of edge detec-
tors, we obtain an edgemap for each original image. Upon
this, we claim a threefold contribution. First, we simulta-
neously extract SIFT and Edge-SIFT descriptors and com-
bine them in the generation of BoF model. Earlier fusion of
descriptors makes it easier to mine complementary informa-
tion from both descriptors. Second, we propose geometric
visual phrases upon traditional visual words, and take them
as mid-level image representation as well as apply a novel
pooling algorithm to them. Third, we use naive Gaussian
blur to obtain a weighting heatmap for spatial weighting on
the image plane. Integrating all the techniques produces a
much more powerful framework, which outperforms state-
of-the-art systems by a margin on various applications.

The proposed algorithm is illustrated in Figure 1. Com-
pared with the traditional BoF framework, some differences
should be marked. First, we generate edgemaps from orig-
inal images using the Compass Operator [19], an improved
version of Canny Operator [4], laying an important foun-
dation of our algorithm. On original images as well as
edgemaps, we extract two kinds of descriptors, i.e., SIFT
and Edge-SIFT, and mix them as a large set of local fea-
tures. After codebook is constructed and descriptors are
quantized onto the visual vocabulary, we build geometric
visual phrases as the mid-level representation of our model.
Before the traditional max-pooling step, we insert two new
steps, i.e., phrase pooling and spatial weighting, for better
description of geometric visual phrases. Finally, we apply
SPM [12] for spatial context modeling, and obtain the rep-
resentation vectors of images.

The remainder of this paper is organized as follows. In
Section 2, we introduce the traditional Bag-of-Features frame-
work for image applications. Section 3 presents our algo-
rithm extracting and fusing complementary descriptors, as
well as provides a detailed analysis of the strategy. In Sec-
tion 4, we introduce a new pooling algorithm named Geo-
metric Phrase Pooling. It is very effective to find structural
information beyond visual words. Section 5 introduces a
simple spatial weighting scheme for interesting region de-
tection. Various image applications of our framework are
shown in Section 6. We draw our conclusions in Section 7.

2. THE BAG-OF-FEATURES FRAMEWORK
The Bag-of-Features (BoF) framework is one of the most

widely used models for image representation. In this sec-
tion, we give a brief introduction, and build a mathematical
notation system for this framework.

2.1 Local Descriptor Extraction
In computer, an original image I is a W ×H matrix:

I = (aij)W×H (1)

where aij is the pixel on position (i, j). For grayscale im-
ages, aij is a single floating number ranged in [0, 1], while it
is a 3-dimensional vector for RGB-space color images.

Due to the poor semantic meaning of raw image pixels, we
extract local descriptors from small patches on the image
plane. There are many works on describing local patches.
Among those, SIFT [16] and HOG [6] are probably the most
widely used ones. They are both gradient based descriptors
extracted on Interest Points of images. Detecting Interest
Points is also a challenging problem. Since many detectors
such as DoG [16] or MSER [18] sometimes fail to find seman-
tic and discriminative patches. we use an alternative method
by performing dense sampling of local patches, leading to the
Dense-SIFT or Dense-HOG algorithm [1].

After descriptor extraction, the image I could be repre-
sented as a set of local descriptors, M:

M = {(d1, l1) , (d2, l2) , . . . , (dM , lM )} (2)

where dm and lm denote the D-dimensional description vec-
tor and the geometric location of the m-th descriptor, re-
spectively. M is the total number of dense descriptors, which
could be hundreds or even thousands under dense sampling.

Note that SIFT or HOG descriptors only provide texture
features of images. By extracting various kinds of descrip-
tors, it is possible to cover other important features such as
shape, color, and so on. Many systems on this topic, such
as [2], have been proposed, showing a much better perfor-
mance over those using single descriptors.

2.2 Quantization for Descriptors
After descriptors have been extracted, they are often quan-

tized to be compact. For this purpose, we train a codebook
B using descriptors from the whole dataset. It is a B × D
matrix, or B vectors with dimension D, each of which, i.e.,
cb, is called a codeword. Most often, the codebook is con-
structed with K-Means clustering algorithm. Recent years,
there are also some works targeting at improving the per-
formance of K-Means [14] [20], and building discriminative
codebooks for large-scale image applications [26].

Next, descriptors are projected onto the codebook for a
histogram representation. This process is called coding, for
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we are actually encoding each descriptor into a sparse vec-
tor. Hard quantization strategy presents a descriptor using
single codeword, leading to a large quantization error. In
recent years, soft quantization methods have been proposed
as alternatives to the hard one. By projecting a descriptor
onto the subspace spanned by a small group of codewords,
it produces smaller quantization error, and performs more
effective. Sparse Coding [13] [23] and Locality-constrained
Linear Coding [22] techniques are such cases. Given a code-
book with B codewords, the quantization vector or feature
vector for a descriptor dm would be a B-dimensional vector
vm. We name vm the corresponding visual word of de-
scriptor dm. In our terminology, there is a clear difference
between the concepts of descriptors and visual words.

2.3 Feature Pooling
After all the descriptors are quantized as visual words,

we shall aggregate them for image representation. We call
this step feature pooling, for we are putting visual words
into a pool for statistics. For this purpose, two major pool-
ing strategies are often used. The max-pooling strategy
calculates the maximal responses on each codeword:

w = max
1≤m≤M

vm (3)

where the notation maxm denotes the element-wise max-
imization, M denotes the number of local patches of the
image, and vm is the m-th visual word. Differently, the
average-pooling strategy calculates the average responses:

w =
1

M

M∑
m=1

wm (4)

Here w, a D-dimensional vector, is named representation
vector or feature vector of the image.

Some researchers [3] have discussed the choice of max-
pooling versus average-pooling. Max-pooling gives more
discriminative representation under soft quantization strate-
gies, while average-pooling fits hard quantization better. Re-
cently, various methods have been proposed to improve the
traditional pooling methods, such as the complex optimiza-
tion in the Geometric `p-norm Pooling [9] algorithm.

2.4 Spatial Context Modeling
Spatial context could greatly help us understand the se-

mantics of images [29]. Therefore, various models are used
for constructing spatial structures. Among those, Spatial
Pyramid Matching [12] is a successful trial. After coding,
images are divided into hierarchical subregions for individ-
ual pooling, and the pooled vectors are concatenated to form
a supervector. For datasets with good alignment such as
Caltech101 [8], SPM improves classification accuracy by an
impressive margin of 10%. However, it shows little improve-
ments or even worse performances on less aligned datasets.

Another line for spatial context modeling is to use visual
phrases [15] [27] [28]. Compared with visual words, visual
phrases are more semantic and robust [25], therefore produce
more discriminative vectors for image representation. Also,
spatial coding of visual phrases are widely used in large-scale
web image search and retrieval systems [29].

2.5 The Baseline Systems
We compare our model with two baselines. The first is

LLC [22], a standard implementation of traditional BoF

framework with single SIFT descriptors. The other one is
the system by Bosch et.al. [2]. In [2], various techniques
are exploited, including multiple descriptors, detection of
regions of interest, and so on. Both baselines represent state-
of-the-art performances for image representation.

3. COMPLEMENTARY DESCRIPTORS
In this section, we propose a novel system for image repre-

sentation using two kinds of descriptors. First, we introduce
an edge based descriptor named Edge-SIFT. Though they
come from heterogeneous domains of original images and
edgemaps, SIFT and Edge-SIFT descriptors share the same
physical meaning in their corresponding dimension, there-
fore we could mix them to train a BoF model. We test our
model and perform detailed analysis on the effect of multi-
ple descriptors. Also, we make a short comment on the early
fusion strategy to reveal its advantages.

3.1 SIFT and Edge-SIFT Descriptors
For an image I, we first extract dense SIFT [16] descriptors

from the image. Denote the set of SIFT descriptors asMS:

MS = {(dS1, lS1) , (dS2, lS2) , . . . , (dSMS , lSMS)} (5)

where the subscript S stands for SIFT, andMS is the number
of SIFT patches on the image plane.

As we know, SIFT descriptors are effective on describing
texture features. To compensate, we can also extract shape
descriptors. Following [2], we apply an edge detector on
image I, producing another W ×H grayscale image IE:

IE = {eij}W×H (6)

where eij , a floating value ranged within [0, 1], is the signif-
icance quantity for pixel (i, j) locating on an edge. We call
IE the corresponding edgemap for original image I.

We use Compass Operator [19] for edge detection. One of
the detected edgemaps is shown in Figure 2, while more of
them could be found in Figure 4 and 13. On edgemaps, tex-
ture details are filtered and the shape of the objects becomes
more clear. Therefore, it is reasonable to extract SIFT de-
scriptors on edgemaps for shape description. We call them
Edge-SIFT descriptors, to differ from original SIFT ones.
Denote the set of Edge-SIFT descriptors as ME:

ME = {(dE1, lE1) , (dE2, lE2) , . . . , (dEME , lEME)} (7)

where the subscript E stands for Edge-SIFT, and ME is the
number of descriptors, which could be different with MS.

3.2 Fusing Descriptors
After different descriptors are extracted, we simple mix

them on the same image plane:

M =MS ∪ME (8)

Here, M is the new set of descriptors for image representa-
tion. Figure 2 illustrates the fusion operation.

We shall emphasize that both SIFT and Edge-SIFT de-
scriptors are 128-dimensional histograms of gradients, there-
fore share the same physical meaning though extracted from
different sources of images. Note that it is important to
guarantee the same physical meaning on the corresponding
dimensions, for we shall compare and combine the descrip-
tors dimension-wise at the clustering and quantization steps.

Finally, we shall make a short comment to compare our
work with [2]. In [2], descriptors are also extracted from
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original images and edgemaps respectively. However, two
categories of descriptors are individually processed through
BoF framework, until fusion is performed on the BoF repre-
sentation of images to form a concatenated supervector. As
we could see in Section 4.5, late fusion limits the flexibility
of the model, and makes it impossible to construct spatial
structures consisting of both kinds of descriptors. On the
contrary, we finish the fusion step much earlier, obtaining a
new set containing both categories of descriptors. We illus-
trate the difference between the models in Figure 3, and will
further discuss the advantages of our model in Section 4.5.

3.3 Experiments and Discussions
Now, we test our model on the Caltech101 dataset. To

make comparison, we inherit the remaining parts of our
framework from LLC [22]. Table 1 shows our results on dif-
ferent combinations of descriptors as well as on single ones.
When we fuse different kinds of descriptors, i.e., SIFT and
Edge-SIFT, our system gives the best performance, while
we observe dramatic accuracy drops when the same kind
of descriptors, i.e., both SIFT, are merged. Therefore, the
compensation between two kinds of descriptors is very clear.

To give a better intuition to this finding, we return to sys-
tems using single descriptors. We choose parameters from
the best after-fusion performance in Table 1, i.e., the step

Table 1: Results on combined descriptors as well as
on single ones. The numbers in brackets are respec-
tively step and patch sizes for SIFT extraction.

Desc 1 Desc 2 Only 1 Only 2 Both

SIFT(7,7) SIFT(6,12) 74.41% 72.69% 75.14%
SIFT(7,7) Edge(6,12) 74.41% 73.08% 78.75%
SIFT(7,7) SIFT(7,12) 74.41% 73.77% 75.75%
SIFT(7,7) Edge(7,12) 74.41% 72.89% 78.94%
SIFT(7,7) SIFT(8,12) 74.41% 73.60% 75.32%
SIFT(7,7) Edge(8,12) 74.41% 72.93% 78.92%

anchor
(+29.17%)

SIFT(44.17%) Edge(73.33%)

SIFT(50.16%) Edge(72.62%)

butterfly
(+22.46%)

SIFT(57.78%) Edge(77.78%)

wrench
(+20.00%)

wild cat
(+30.00%)

SIFT(57.50%) Edge(27.50%)

water lilly
(+27.14%)

SIFT(65.71%) Edge(38.57%)

crocodile
(+20.00%)

SIFT(33.00%) Edge(13.00%)

Categories better classified by SIFT Categories better classified by Edge-SIFT

Figure 4: Comparison of different descriptors. Clas-
sification accuracies with single descriptors are listed
above sample images.

sizes of SIFT and Edge-SIFT are both 7 pixels, while the
sizes of local patches are chosen to be 7 and 12 pixels, re-
spectively. To compare different descriptors, we separately
evaluate the classification accuracies by category, and list
those categories with largest accuracy gaps in Figure 4.

It is clear that different types of objects are better de-
scribed using different types of descriptors. For objects with
less deformation such as manmade tools, the better strategy
is to filter their texture details and pay more attention on
the edgemaps. Therefore, Edge-SIFT descriptors give a bet-
ter description on these objects. However, there are also a
number of objects in which texture features are more dis-
criminative, while shape description is less robust. Animals
and plants are such cases, where it is better to preserve tex-
ture details in original images and use SIFT descriptors.

Since different kinds of descriptors are complementary for
discriminating objects, it is reasonable to preserve both of
them for a more robust image representation. Figure 5 shows
an example of four categories. It is hard to classify them
using any single kind of descriptors, for the between-category
similarity in texture or shape features. Only using both
categories of descriptors makes it possible for our model to
distinguish them well.

4. GEOMETRIC PHRASE POOLING
Till now, we have described a framework for image rep-

resentation using two kinds of descriptors. However, it is
worth noting that different descriptors are individually coded
and pooled in the algorithm. The lack of cooperation be-
tween them limits the discriminativity of our model. In this
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section, we shall introduce a novel structure named geomet-
ric visual phrase. It shall provide us a mid-level representa-
tion containing both texture and shape features. We illus-
trate our algorithm in the right column of Figure 1.

4.1 The GPP Algorithm
Let’s start from Equation (8), and rewrite it as:

M = {(d1, l1) , (d2, l2) , . . . , (dM , lM )} (9)

To begin with, we give a new definition of geometric visual
phrases. Following [24], we regard a visual phrase as a com-
bination of visual words. By intuition, phrases often consist
of words close to each other on the image plane. As local
patches on images are not ordered so well as textual words,
we ignore the order and take a phrase as a disordered set of
visual words. Following this basic rule, we propose a simple
algorithm. Define a positive integer K, K � M . For the
m-th descriptor, we search for its K nearest neighbors on
the image plane and form a word group:

Gm = {(dm,0, lm,0) , . . . , (dm,K , lm,K)} , m = 1, 2, . . . ,M
(10)

Gm is the m-th geometric visual phrase. The central
word of Gm is defined as the zeroth descriptor (dm,0, lm,0),
which is simply (dm, lm) itself. The location of phrase Gm is
defined by lm,0. Other K descriptors are called side words.
K is the order of Gm, which contains K + 1 words.

Suppose that we have trained a codebook B with B code-
words. For a phrase Gm, we respectively perform LLC [22]
coding for each of its words. LLC is a sparse coding scheme.
Given B and number of bases r (most often r � B), it
produces feature vectors with at most r nonzero elements
among totally B dimensions. For Gm, there will be K + 1
sparse feature vectors, one for each visual word. Denote
vm,k as the feature vector of k-th word in Gm.

Now, Geometric Phrase Pooling (GPP) is performed
on the K + 1 feature vectors:

wm = max
1≤k≤K

{vm,0 + vm,k} (11)

= vm,0 + max
1≤k≤K

vm,k (12)

where the notation maxk denotes element-wise maximiza-
tion on K vectors with B dimensions.

Equation (11) is the core equation of GPP, while (12) is an

Geometric 
Visual Phrase

Word Pair 1 Word Pair 2 Word Pair 8

……

Word Pair 3

……

……

Pooled Vector 
for one Phrase

LLC Coding

Summation
MAX

……

Central 
Word

Side 
Word

Figure 6: Illustration of Geometric Phrase Pooling.
We group the central word and each side word as a
pair and add their feature vectors together. At last,
maximization is performed on the whole phrase.

equivalent version for easier implementation. We illustrate
the simple working mechanism of (11) in Figure 6.

After GPP, we obtain a B-dimensional vector wm as the
feature vector for the m-th visual phrase Gm. Finally, a
max-pooling step is performed over all the phrases:

w = max
1≤m≤M

wm (13)

and w is obtained as the feature vector of the image.

4.2 Deep Insights for GPP
The formulation of GPP is very easy to understand. How-

ever, the intuition behind the simple algorithm is not that
straightforward. Here, we clarify the advantages within the
formulation to give a better understanding of GPP.

First, we shall provide an intuitive explanation. Go back
to Equations (11) and (13). Simple derivation gives:

w = max
1≤m≤M

wm (14)

= max
1≤m≤M

{
max

1≤k≤K
{vm,0 + vm,k}

}
(15)

= max
1≤m1<m2≤M,m1�m2

{vm1 + vm2} (16)

where m1 � m2 means that visual words m1 and m2 are
adjacent ones, i.e., when one of them is taken as central
word, the other is one of the side words. Hence, w is the
maximization over summations of all adjacent word pairs.
Define vm1 + vm2 as the contribution to GPP from word
pair (m1,m2).

Now, recall the formulation of max-pooling algorithm and
rewrite it into an equivalent version:

w = max
1≤m≤M

vm (17)

= max
1≤m≤M

{
max

1≤k≤K
{max{vm,0,vm,k}}

}
(18)

= max
1≤m1<m2≤M,m1�m2

{max{vm1 ,vm2}} (19)

Naturally, max{vm1 ,vm2} is defined as the contribution to
max-pooling from word pair (m1,m2).

For an adjacent word pair (m1,m2), consider its contri-
butions to GPP and max-pooling. For simplicity, we denote
feature vectors for them as v1 and v2, respectively. If v1
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Figure 8: Heatmaps generated from the percentages
of useful pairs of visual words on the image plane.
Numbers in brackets are accuracy gains for those
categories, from LLC to GPP.

and v2 have no nonzero dimensions in common, we have
max {v1,v2} = v1 + v2. In this case, the word pair con-
tributes equally to max-pooling and GPP. However, if there
are common nonzero dimensions in v1 and v2, things will
be different: this word pair would better contribute to GPP
by enhancing the overlapping dimensions. We illustrate our
intuition in Figure 7.

From the analysis above, we have learned that only word
pairs with nonzero dimensions in common would make con-
tribution to GPP. In our framework, we perform descrip-
tor quantization using LLC [22], a locality sensitive coding
scheme. Descriptors are projected onto overlapping dimen-
sions only if they are similar in feature space. Therefore,
GPP latently selects those word pairs both similar and ad-
jacent, and enhance their nonzero responses in common.

There is an acknowledged observation that on natural im-
ages, local patches with the same semantics are more likely
to be correlated, i.e., visually similar. Therefore for a geo-
metric visual phrase consisting of one central word and K
side words, the correlation between central word and side
words will be high (visually similar) if this geometric visual
phrase is located on a semantic patch. This high correla-
tion turns to be the common nonzero dimensions of the vi-
sual words. Therefore, GPP enhances the responses of such
highly correlated patches, or word pairs, in a latent way.

To verify our inference, we need some additional statis-
tics. For each visual phrase, we count the percentage of
side words with common nonzero dimensions with the cen-
tral word. This could be taken as a histogram on the im-
age plane. Smoothing it gives us a heatmap illustrating
the visual correlations on the corresponding patches. Fig-
ure 8 shows some randomly selected examples from the Cal-
tech101 dataset. We could see that significantly enhanced
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Figure 9: Illustration of different improvements for
GPP (best viewed in color PDF). Above: increas-
ing K for long phrases. Middle: Enlarging number
of bases in LLC for more overlapping. Below: Soft
weighting on geometric visual phrases, where float-
ing numbers are the soft weights on visual words.

visual responses are mainly distributed on the semantic re-
gions. By paying more attention on these regions, GPP
produces better representations than LLC.

In summary, we could conclude that GPP is indeed a supe-
rior pooling method with a clear motivation and convincing
improvements.

4.3 Enhancing GPP
In this section, we will discuss three ideas to improve the

effectiveness of GPP. All of them are illustrated in Figure 9.

4.3.1 Increasing Neighbors for Long Phrases
In Section 4.2, we observe that word pairs with similar ap-

pearance and geometric location would contribute to GPP.
To search for more such pairs, it is straightforward to in-
crease the order of phrases, i.e., K. However, increasing K
would also bring in more irrelevant side words. We don’t set
K automatically, but choose the best performance (K = 20)
after testing a wide range of K (from 5 to 40).

4.3.2 Numbers of Bases of Visual Phrases
As LLC [22] is a sparse coding algorithm, the number of

bases r is much smaller than the visual codebook size B.
In this case, histogram representations of adjacent visual
words could hardly overlap, therefore percentage of word
pairs that contribute to GPP is small. Increasing r produces
more useful word pairs, but also damages the locality of
LLC. The selection of r is a tradeoff between description
and robustness.

The central word is the most significant component in
a visual phrase, therefore its robustness is more important
than side ones’. For this, we use a larger r for side words
and yet a small r for central one. To clarify, we denote r1
and r2 as numbers of bases for central words and side words
respectively. In our experiments, r1 = 5 and r2 = 30.

4.3.3 Soft Weighting for Smooth Phrases
By intuition, if the distance between visual words is large,

the relationship between them is loose. Therefore, we apply
an exponential decay on side words, assigning lower weights
onto distant ones. For a side word (dm,k, lm,k) with feature

544



256 512 1024 2048
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Size of visual vocabulary, B

A
ve

ra
ge

 ti
m

e 
fo

r e
ac

h 
im

ag
e 

(s
)

 

 LLC (r = 5)

LLC (r = 10)

GPP (K =10,r1 =5,r2 = 5)

GPP (K =20,r1 =5,r2 = 5)

GPP (K =10,r1 =5,r2 = 30)

GPP (K =20,r1 =5,r2 = 30)

Figure 10: Average
time required for each
image. Data are tested
on 4× 2.0GHz CPUs.

256 512 1024 2048
0

5

10

15

20

25

30

35

40

45

50

Size of visual vocabulary, B

A
ve

ra
ge

 p
er

ce
nt

ag
e 

of
 n

on
ze

ro
 d

im
en

si
on

s 
(%

)

 

 
LLC (r = 5)

LLC (r = 10)

GPP (K =10,r1 =5,r2 = 5)

GPP (K =20,r1 =5,r2 = 5)

GPP (K =10,r1 =5,r2 = 30)

GPP (K =20,r1 =5,r2 = 30)

Figure 11: Average
percentage of nonzero
dimensions in pooled
vectors.

vector vm,k, we penalize it with weight sk defined as:

sk = exp
{
−σw × ‖l0 − lk‖2

}
(20)

where σw is the smoothing parameter on visual words, and
‖·‖2 is the Euclidean distance. Now, we obtain a smoother
version of GPP formulation (12):

wm = vm,0 + max
1≤k≤K

sk × vm,k (21)

In all the experiments, we take σw = 0.01.

4.4 Time Complexity and Sparsity
Here, we test the time complexity and the sparsity of GPP

to show its simplicity and efficiency. To make comparison,
we use the implementation of LLC with code downloaded
from the website provided by [22]. GPP with different pa-
rameters is added into the BoF framework as an intermedi-
ate step. We denote the original framework as LLC and our
framework as GPP, construct different sizes of codebooks,
and respectively record the average coding and pooling time
for each image, as well as the average percentage of nonzero
dimensions in the feature vector w.

Results are plotted in Figure 10 and 11. Owe to the sim-
plicity, our framework is very efficient to carry out. Geomet-
ric Phrase Pooling requires no more than 0.4s on a single
image, which is much better than those complicated pooling
algorithms such as GLP [9]. On the other hand, Figure 11
reveals that GPP generates much denser feature vectors for
image representation, especially in the scenarios with longer
phrases and more coding bases. A comment needs to be
made here. People have been debating the use of dense ver-
sus sparse features for a long time. Yang et. al [23] have
claimed the effectiveness of sparse feature vectors. Our ex-
periments give a neutral argument about this topic: denser
features do not mean to provide worse results, but we need
proper structures to organize them. GPP actually provides
a compromise between sparse and dense representations of
images.

4.5 Early Fusion vs. Late Fusion
Finally, we return to the discussion of early fusion versus

late fusion in Section 3. On the Caltech101 dataset, we test
different combinations of fusion strategies and pooling meth-
ods. Results are listed in Table 2. From the table, we could
clearly observe the advantage of early fusion over late fusion.
When the geometric visual phrases are not built, they show
comparable performances. However, GPP helps to construct
robust mid-level structures upon fused descriptors, resulting
in a notable improvement on the early fusion system. In

Table 2: Caltech101 classification results on frame-
works with different fusion and pooling strategies.

Late Fusion [2] Early Fusion (Ours)

LLC [22] 79.12% 78.94%
GPP (Ours) 79.48% 81.36%

SIFT Descriptors Edge-SIFT Descriptors Fused Descriptors

Texture Visual Phrase Shape Visual Phrase Fused Visual Phrases

Figure 12: Applying GPP on fused descriptors helps
to generate complementary visual phrases.

Figure 12, we illustrate the architectures of visual phrases
over single and complementary descriptors. Containing both
texture and shape features, mid-level structures upon fused
descriptors are more robust and semantic meaningful.

5. SPATIAL WEIGHTING
For less aligned datasets, we need to detect Regions of In-

terest (ROI) on the original images. This is equivalent to a
spatial weighting, or heatmap learning process. In this sec-
tion, we provide a simple spatial weighting strategy using a
gradient based edge detector, for the observation that higher
contrast regions provide stronger stimuli to our vision [11].

Following (6), an edgemap IE is a W ×H matrix with ele-
ments representing the intensities of edge responses. Based
on it, we calculate a W ×H weighting matrix W:

W = {wij}W×H (22)

Here, wij is the spatial weight at position (i, j), which is
accumulated from decayed edge responses:

wij =
∑
i′,j′

ei′j′ × exp
{
−σe

∥∥(i, j)−
(
i′, j′

)∥∥
2

}
(23)

Here, coordinate (i′, j′) are traversed on the whole image,
σe is the smoothing parameter on edge responses, and ‖·‖2
is the Euclidean distance. As σe goes up, there shall be
smaller weights accumulated on pixels far from edges. In
our experiments, σe is fixed to 0.05.

With spatial weights, formulation (13) becomes:

w = max
1≤m≤M

{wm ×wm} (24)

where wm is the weight at lm, the central pixel of Gm.
To evaluate the proposed spatial weighting scheme, we

test it on the Caltech101 dataset. Again we calculate the
classification accuracies by category and list the most im-
proved ones in Figure 13. For better visualization, we plot
the corresponding weighting matrices W as heatmaps for
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Figure 13: Edgemaps and weighting heatmaps of im-
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(numbers in brackets) after spatial weighting.

comparison. Since higher weights often appear in the fore-
ground, the feature vector obtained with (24) is more robust.

Finally let us note that (23) is very computing expen-
sive, for it requires a complete enumeration on each pairs
of pixels. On a 300 × 300 image, it might take more than
30 seconds on a single-core CPU. Here, we exploit an ap-
proximation by skipping the calculation of the pairs with
Euclidean distances larger than 50 pixels. Taking our best
smoothing parameter, i.e., σe = 0.05, the maximal ignored
coefficient could be exp{−0.05× 50} ≈ 0.08, which is rela-
tively small. The approximation algorithm only requires less
than 0.5 second on a single image. It is efficient in practise
considering the calculation is required only once.

6. CASE STUDIES
In this section, we provide the experimental results on

several widely used datasets with various tasks, i.e., image
classification, retrieval and scene understanding. To show
the efficiency of our algorithm, we use the same settings
as state-of-the-art algorithms, and the best settings learned
from previous sections for GPP and spatial weighting.

• Edge detection. We use the Compass Operator [19]
for edge detection. The radius parameter σ is fixed as
4 as proposed in the same literature.

• Image descriptors. We use the VLFeat [21] library
to extract SIFT descriptors. The step size and the
scale of patches are discussed separately for each dataset.

• Codebook construction. We use a traditional K-
Means algorithm for clustering. The size of codebook
is 2048 for Caltech101 and 15-scene dataset and 4096
for other two. The number of descriptors collected for
clustering does not exceed 2 million.

• Coding and pooling method. We apply the orig-
inal source code provided by authors of LLC [22] for
coding. Upon that, we apply GPP with the best pa-
rameters: K = 20, σw = 0.01, r1 = 5 and r2 = 30.

• Spatial weighting. We take σe = 0.05 for edge based
spatial weighting scheme.

• SPM settings and normalization. We apply a 3-
layer SPM for enhancing the spatial context of fea-
tures. After that, a `2-norm normalization is per-
formed to produce comparable feature vectors.

• SVM for tagging. A linear SVM by Chang et.al [5]
is used for training and testing. For retrieval tasks, we
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Figure 14: Sample images from Pascal VOC 2007
dataset. Upper: images with objects of multiple
categories. Middle: images with small objects. Bot-
tom: images with many objects of same category.

accordion car_side trilobite leopard motorbike

anchor butterfly pyramid cougar_body pigeon

Figure 15: Sample images from Caltech101 dataset.
Upper: categories on which our framework reports
100% accuracies (30 trains). Bottom: categories on
which our framework most outperforms LLC [22].

rank the images according to the confidence probabil-
ities reported by SVM.

• Accuracy evaluation. For Pascal VOC 2007 Chal-
lenge, we use the standard benchmark method. On
other datasets, we randomly selected fixed number of
images for training, and test the model on others to
evaluate the average classification accuracy over all
categories. We repeat random selection for 10 times
and report the average performance.

6.1 Pascal VOC 2007 Dataset
There are 9963 images containing 20 categories of objects

in the Pascal VOC 2007 dataset [7], a competition dataset
for image retrieval. From sample images listed in Figure 14,
we could find it a challenging dataset, for the significant
varying of the appearances, scales, numbers and locations of
the objects. A standard benchmark is provided by Pascal
Challenge, calculating the Average Precision (AP) measure.

The step size and scale of patches for SIFT descriptors
are 6 and 4, while 7 and 12 for Edge-SIFT descriptors. We
report a 53.89% precision, winning LLC [22] (49.13%) re-
markably by 4.74%.

6.2 Caltech101 Dataset
The Caltech101 dataset [8] contains 9144 images of 102

categories, including a background category. There exists
significant deformation among different objects from the same
category. Sample images are listed in Figure 15.

546



Table 3: Classification results on Caltech101.

# training 5 10 15 20 30

Lazebnik [12] - - 56.4 - 64.6
Yang [23] - - 67.0 - 73.2
Wang [22] 51.15 59.77 65.43 67.74 73.44
Boureau [3] - - - - 75.7
Bosch [2] - - - - 81.3
Ours 61.90 71.75 76.03 78.53 82.45

±0.54 ±0.60 ±0.63 ±0.39 ±0.59
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guitar pick

bat

elk kayak rifle

desk globe

socks

hot doggolf ballfrog

Figure 16: Sample images from Caltech256 dataset.
Upper: categories on which accuracies are 90% or
higher (30 trains). Middle: images with small ob-
jects. Bottom: images with many objects.

In this dataset, we use 7×7 SIFT patches and 12×12 Edge-
SIFT patches, and the step sizes are both fixed to 7. We have
used 5, 10, 15, 20, 30 images per category for training, and
others for testing. Results are concluded in Table 3. In all
cases, GPP outperformed LLC by more than 9%, or even
more than 10% in scenarios of fewer training samples.

6.3 Caltech256 Dataset
The Caltech256 dataset [10] contains 30607 images of 257

categories, including a clutter category. It is much more
challenging than Caltech101, for the objects in it not only
suffer from significant size changes and deformation, but
are also located on different positions on images. Figure 16
shows some sample images for this dataset.

In this dataset, 5× 5 SIFT patches and 8× 8 Edge-SIFT
patches are extracted with a fixed step size of 5. We have
used 5, 15, 30, 45, 60 images per category for training, and
others for testing. Results are listed in Table 6.3.

6.4 15-scene Dataset
The 15-scene dataset [12] contains 15 scenes and 4485 im-

Table 4: Classification results on Caltech256.

# training 5 15 30 45 60

Griffin [10] - 28.3 34.1 - -
Wang [22] - 34.36 41.19 45.31 47.68
Bosch [2] - - 44.0 - -
Ours 26.12 36.35 45.07 48.02 50.33

±0.21 ±0.31 ±0.24 ±0.25 ±0.18

bedroom suburb industrial kitchen livingroom

coast forest highway insidecity mountain

opencountry street tallbuilding office store

Figure 17: Sample images from 15-scene dataset

Table 5: Results on 15-scenes dataset.

# training 10 20 30 50 100

Lazebnik [12] - - - - 81.4
Wang [22] 66.97 72.44 75.78 78.84 82.34
Ours 70.67 76.12 78.74 81.72 85.13

±0.46 ±0.73 ±0.88 ±0.48 ±0.72

ages. It might be the most widely used dataset for scene
understanding tasks, in which we need to discriminate vari-
ous categories of scenes listed in Figure 17.

5 × 5 patches with step size 5 are extracted for SIFT,
and 8 × 8 patches with step size 8 are used for Edge-SIFT
extraction. 10, 20, 30, 50, 100 images per category are used
for training. Results are shown in Table 5.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a novel framework for image

representation, and apply it for various image applications.
We claim three major contributions. First, we extract SIFT
and Edge-SIFT descriptors from original images and the
corresponding edgemaps respectively, and then mix them
together to train a joint BoF model. Experiments have re-
vealed good compensation property of SIFT and Edge-SIFT
descriptors. On the other hand, fusing them at very early
stage gives us more room for spatial modeling. Second, we
propose a novel pooling strategy named Geometric Phrase
Pooling. By constructing geometric visual phrases upon
complementary visual words, it is possible to model spatial
structures containing both texture and shape features, pro-
viding more robust mid-level representation. Third, based
on edge detection, we propose a simple and effective spatial
weighting scheme to detect Regions of Interest. Integrating
all the above coherently, we obtain a very powerful model
that outperforms state-of-the-art algorithms on image clas-
sifications, retrieval and understanding applications.

However, there are still some open problems in our frame-
work. As we have seen, objects are better described by dif-
ferent heterogeneous features such as texture and shape. If
we could integrate heterogeneous features in a coherent way,
it is possible to obtain a more discriminative description of
different objects. When we are constructing spatial struc-
tures, we simply group adjacent visual words together, ig-
noring the size and orientation of local descriptors, which
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could be useful for sophisticated spatial modeling. Also,
the information contained in edgemaps is not completely
exploited, and our spatial weighting scheme based on region
of interest is still naive. For these problems, we might seek
help from Computational Geometric algorithms for better
understanding of the detected edgemaps. We will investi-
gate these problems in our future work.
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