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ABSTRACT

Fine-grained visual categorization (FGVC) refers to the task
of classifying objects that belong to the same basic-level class
(e.g., different bird species). Since the subtle inter-class varia-
tion often exists on small parts (e.g., beak, belly, etc.), it is rea-
sonable to localize semantic parts of an object before describ-
ing it. However, unsupervised part-segmentation methods of-
ten suffer from over-segmentation which harms the quality of
image representation. In this paper, we present a fine-tuning
approach to tackle this problem. To this end, we perform a
greedy algorithm to optimize an intuitive objective function,
preserving principal parts meanwhile filtering noises, and fur-
ther construct mid-level parts beyond the refined parts toward
a more descriptive representation. Experiments demonstrate
that our approach achieves competitive classification accura-
cy on the CUB-200-2011 dataset with both Fisher vectors and
deep conv-net features.

Index Terms— Fine-Grained Visual Categorization,
Part-based Model, Object Segmentation, Refinement.

1. INTRODUCTION

Fine-grained visual categorization (FGVC) refers to the task
of distinguishing subordinate categories (e.g., tree sparrow,
Ivory gull, Anna hummingbird, etc.) which belong to the same
basic-level category (bird). The subtle inter-class variation is
often the major challenge of FGVC.

The Bag-of-Features (BoF) model is widely adopted for
image classification. It extracts local descriptors, encodes and
summarizes them into a global image representation. Some-
times, spatial context modeling is adopted to group descrip-
tors according to their coordinates on the image. To introduce
more visual clues based on parts, unsupervised part detectors
are proposed for fine-grained tasks. Template matching mod-
els are adopted to automatically discover object parts [1] [2],
and the Deformable Part Model (DPM) is verified efficient for
part alignment [3] [4]. Researchers also suggest to partition
the segmented foreground into parts in both supervised [5]
and unsupervised [6] manners. However, unsupervised part
detectors [4] [6] often suffer from over-segmentation, which
leads to ambiguous image representation and, consequently,

Fig. 1: Sample images from the CUB-200-2011 dataset [7]
(best viewed in color). Each image is cropped with the pro-
vided bounding box. Top: Examples of fine-grained align-
ment [6]. Bottom: Examples of symbiotic segmentation and
part localization [4].

unsatisfied classification accuracy. An over-segmented exam-
ple is shown in the upper-right part of Figure 1.

In this paper, we propose a simple fine-tuning algorithm
to combat over-segmentation. Based on a straightforward in-
tuition, we formulate the fine-tuning process with an objective
function, and optimize it using a greedy algorithm. We further
construct mid-level visual concepts on the basis of the refined
parts with a bruteforce search. It is verified that, although the
number of parts is decreased during mergence and combina-
tion, higher classification accuracy is achieved, implying that
more discriminative image representation is obtained. The
main contribution of this paper is to provide an evidence on
the benefit of fine-tuned segmentation for fine-grained visual
categorization. We evaluate our algorithm with a bird classi-
fication task on the CUB-200-2011 dataset [7], and demon-
strate competitive performance, i.e., 65.13% with Fisher vec-
tors and 70.34% with deep conv-net features.

2. RELATED WORKS

Fine-grained visual categorization (FGVC) is aimed at dis-
criminating images of the same basic-level concept, such as
flower [8], aircraft [9], dog [10] and bird [7]. It is closely re-
lated to two well studied topics in computer vision, i.e., image
representation and object part detection.
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2.1. Image Representation Models

There are lots of properties shared by fine-grained and gener-
ic image classification, in which images are represented as
high-dimensional vectors and fed into generalized machine
learning algorithms for training and testing. Popular meth-
ods for image representation include Bag-of-Features (BoF)
model and deep Convolutional Neural Networks (CNNs).

The BoF model starts from extracting local descriptors.
SIFT [11], HOG [12] and Local Color Statistics (LCS) [13]
are widely adopted, and dense sampling is efficient for image
classification. Next, a codebook is trained to estimate feature
distribution, and descriptors are encoded as compact feature
vectors. Popular feature encoding methods include LLC [14]
and Fisher vectors [15]. Pooling algorithms [16] [17] are used
to aggregate local feature vectors into a global representation.

In recent years, CNNs [18] have been incorporated into a
number of visual categorization systems. With the availabili-
ty of large-scale image data [19] and powerful computational
resources, CNN has been verified to produce superior image
classification performance to conventional BoF models. The
intermediate responses of a pre-trained CNN model could al-
so be applied to other image applications [20], e.g., in clas-
sification tasks, deep conv-net features significant outperform
conventional handcrafted descriptors [21] [22] [23].

2.2. Part Detection

Fine-grained visual categorization often involves discriminat-
ing objects by subtle inter-class differences. To this end, se-
mantic part detection is generally adopted.

One solution is foreground segmentation [8] [24] [25] fol-
lowed by part detection [1] [2] [6]. It is shown that filtering
out background significantly improves classification accura-
cy [8]. Meanwhile, various techniques are adopted to improve
the detection quality, such as co-segmentation [24] and parts
derived from foreground shapes [6] [25].

There are also efforts aimed at training unsupervised al-
gorithms for part detection [26] [27] [28], or performing seg-
mentation and part localization in a joint manner [4]. Either
model provides better alignment for image description. In [4],
Chai et al. apply a symbiotic set of templates to perform fore-
ground segmentation and part detection simultaneously.

3. THE PROPOSED ALGORITHM

3.1. Motivation

We propose an approach to fine-tune unsupervised part seg-
mentation. We start from the segmentation results of [6],
which produces state-of-the-art classification performance.
After foreground detection, an ellipse is fitted to the object
and the main direction is defined by the major axis of the
ellipse. The object is partitioned uniformly along the main
direction into four principal parts, as shown in Fig. 2 (a).

Fig. 2: An illustration of fine-tuned segmentation. (a) Orig-
inal segmentation. (b) Independent regions. (c) Four seed
parts which are the largest regions with different indicator val-
ue. (d)-(f) Iteratively merging small regions into connected
seed parts. (g) Discarding isolated regions. (h) Refined parts.

We point out that such rough segmentation often fails to
satisfy some straightforward properties, e.g., intuitively, all
the segmented parts should be connected. Empirically, frac-
tional regions in segmentation often correspond to less mean-
ingful visual contents which should be merged into larger re-
gions. In the following, we design a fine-tuning algorithm to
alleviate the ambiguity caused by over-segmentation.

3.2. Merging Small Fractions

We define an indicator aij ∈ {0, 1, 2, 3, 4} for the pixel at
position (i, j). Pixels with aij = 0 belong to the background.
We call a region independent if it is connected and contains
pixels with the same nonzero indicator value. We denote the
number of maximal independent regions as L, most often
L > 4, and denote each region as Rl which is the set of the
contained pixels, for l = 1, 2, . . . , L. The union of original
regions is denoted as R: R =

∪L
l=1Rl. Let sl = |Rl| and

vl ∈ {1, 2, 3, 4} denote the size and the indicator value of the
l-th region, respectively. The goal of refinement is to obtain
four connected refined parts meanwhile maximally preserving
original segmentation results, i.e., the indicator values of a
maximal number of pixels are unchanged. We denote v′l for
the indicator value of the l-th region after refinement, then the
loss function of refinement could be formulated as:

L(P1,P2,P3,P4) =
4∑

i=1

∑
Rl∈Pi

slδl, (1)

s. t. Pi is connected, i = 1, 2, 3, 4, (2)

where

Pi =
∪
v′
l=i

Rl, i = 1, 2, 3, 4, and δl =

{
0, v′l = vl
1, v′l ̸= vl

. (3)
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Fine-tuned parts are obtained by optimizing (1):
{P⋆

1 ,P⋆
2 ,P⋆

3 ,P⋆
4} = arg min

{P1,P2,P3,P4}
L. (4)

One can easily observe that the original regions would
not be divided in refinement, i.e., if two pixels belong to the
same region Rl, they will definitely fall into the same part
Pi. Therefore, it is reasonable to assume that the maximal re-
gion with the indicator value i are not changed (i = 1, 2, 3, 4).
These four largest regions are selected as seed parts, and oth-
er regions are merged with them to preserve the connection
constraint (2). The motivation of mergence lies in that neigh-
boring regions often share very similar visual contents.

Four seed parts are removed from the union firstly: R ←
R −

∪4
i=1 Pi. Then, we attempt to absorb smaller regions

which are connected to seed parts. A simple greedy algorithm
is adopted here. If a smaller region Rl ⊂ R is connected to
at least one seed part, it would be absorbed by the largest
connected seed part Pi, i.e., Pi ← Pi

∪
Rl, v′l ← vi. And

the absorbed region is excluded from the region union: R ←
R−Rl. This process will be iterated until R = ∅ or all the
remaining regions in R are only connected to background.
These regions would be discarded (set as background). Final-
ly, we obtain four refined parts {P1, P2, P3, P4}. Combining
these four parts yields the refined foreground. An example of
mergence is illustrated in Figure 2.

3.3. Constructing Mid-level Parts

Following the idea of [5], we construct mid-level parts which
might contain more descriptive visual contents. Starting from
the refined parts {P1,P2,P3,P4}, mid-level parts are con-
structed by a bruteforce search. Inspired by the intuition that
neighboring parts often share similar properties, we combine
neighboring parts into a larger part and justify the perfor-
mance. Let Cmn = {Pm

∪
Pn} denote a mid-level part,

where m,n are the indices of two neighboring parts. Since
the number of parts is relatively small (P = 4) in this case,
the bruteforce search could finish in a very short time. We
observe that the best classification accuracy is obtained with a
combined part C23 meanwhile discarding both P2 and P3 (P1

and P4 are remain unchanged). Please refer to Sec. 4.2 for
details. This result reveals that mid-level parts might be more
discriminative since along-boundary ambiguity is alleviated,
e.g., C23 might better represent the concept body which is par-
titioned into P2 and P3 previously. The overall flowchart of
our algorithm is summarized in Algorithm 1.

4. EXPERIMENTS

4.1. Dataset and Implementation Details

We evaluate our algorithm on the CUB-200-2011 dataset [7],
one of the most popular datasets for fine-grained visual cate-
gorization. There are 11788 bird images among 200 different

Algorithm 1 : Fine-tuned part segmentation

Input: A union of original regionsR =
∪L

l=1Rl.
1: Choose four seed parts P1,P2,P3,P4;
2: R← R−

∪4
i=1 Pi;

3: REPEAT: for a regionRl ⊂ R;
4: IFRl is connected to at least one seed parts, let Pi be the

largest one, i ∈ {1, 2, 3, 4};
5: Pi ← Pi

∪
Rl and v′l ← vi;

6: R ← R−Rl;
7: ENDIF
8: UNTIL:R = ∅ or the remaining regions are isolated.
9: Four refined parts {P1, P2, P3, P4}.

10: C23 ← P2

∪
P3.

Output: Fine-tuned parts {P1, C23, P4}.

species, and a bounding box containing exactly one bird is
provided for each sample. Throughout this paper, we inherit
the fixed training/testing split provided by the authors.

For the BoF model, we first resize each image (after
cropped by the bounding box) so that the longer axis has 600
pixels. Two types of handcrafted descriptors are extracted,
i.e., Max-SIFT [29] and LCS [15]. All the descriptors are
reduced to 64 dimensions with PCA. Following [4], we train
a GMM with 128 components to encode the descriptors on
the foreground, and four GMMs with 32 components, one
for each part. Fisher vectors followed by sum-pooling are
adopted for encoding, and features from different parts are
concatenated into an image-level representation vector.

We also extract deep conv-net features [30] to cooperate
with our algorithm. An image, after cropped by the bounding
box, is resized to 224 × 224 and fed into a deep CNN. The
intermediate responses referred to as fc-6 are taken as the im-
age representation (4096 dimensions). We use PCA to reduce
the vectors extracted from four parts to 1024 dimensions.

Thus, we obtain four types of features, i.e., MSIFT (Max-
SIFT), LCS, Fused (MSIFT+LCS) and deep conv-net. We de-
note feature vectors summarized from the whole foreground
and four individual parts as xFG and xPART, respectively. Su-
perscripts O and R denote features extracted from before and
after fine-tuned segmentation. All the features are square-root
normalized and then ℓ2 normalized before fed into an SVM.

4.2. Results and Comparisons

The categorization performance is evaluated by mean accu-
racy (mA). Results provided by different features and mod-
els are summarized in Table 1. One might observe that the
proposed algorithm outperforms the baseline in almost every
single case. For example, with MSIFT, the recognition rate is
45.17% after fine-tuned segmentation, with a more than 1.3%
absolute gain (a more than 3% relative accuracy gain). The
consistent improvement reveals the advantage of fine-tuned
segmentation. The performance produced by concatenating
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Table 1: Classification accuracy (%) on CUB-200-2011 using
different models and features.

LCS MSIFT Fused Deep Conv-net
xO
FG 47.82 46.60 60.37 68.29

xR
FG 47.99 46.31 60.66 69.83

xO
PART 48.24 43.85 58.16 61.54

xR
PART 49.51 45.17 59.55 63.00

[xO
FG;x

O
PART] 53.58 50.20 63.29 67.81

[xR
FG;x

R
PART] 54.36 51.18 64.34 69.02

xFG and xPART is usually better than that produced by using
xFG and xPART separately. The only exception comes from
the result of using deep conv-net features, which might be
caused by the relatively weak descriptive power of conv-net
features to describe individual parts.

The impact of constructing mid-level parts is summarized
in Table 2. In order to keep the feature length unchanged af-
ter part combination, we use a GMM with 64 components and
reduce the dimension of deep conv-net features from 4096 to
2048 to encode the mid-level parts. With a mid-level part
composed of P2 and P3, our algorithm achieves higher accu-
racy. We point out that such improvement comes from allevi-
ating the ambiguity on the boundary of segmented parts. P2

and P3, two middle parts, are combined to form the body of a
bird, which might be more robust than individual parts.

In Table 3, we compare our algorithm with the state-of-
the-arts. One can observe that our algorithm outperforms the
baselines and is also competitive among recently proposed
works such as [3] [20]. Since we do not train part detectors us-
ing the complicated and time-consuming part-based R-CNN
model, our result is inferior to [22].

4.3. Discussions

To reveal that the accuracy gain does come from the fine-
tuned segmentation, we perform pairwise classification exper-
iments. We choose 10 bird classes with 10 well-segmented
cases and 10 poor cases in each class. Then, binary classi-
fication is performed between any two classes (45 tasks in
total). In each task, we randomly split both well- and poorly-
segmented samples into training and testing groups (5 images
each). Mean classification accuracy is reported over 45 tasks.

Mean classification accuracy with the original segmen-
tation is 58% on the poorly-segmented samples, and 82%
on the well-segmented ones, with a 24% difference. After
fine-tuned segmentation, accuracy on the originally poor-
segmented samples rises to 72%, with a 14% absolute (24%
relative) accuracy gain. In comparison, we also perform a
10-class categorization on these 200 samples. In each class,
10 samples are randomly selected for training and the rest

Table 2: Classification accuracy (%) using mid-level parts.

Fused Deep Conv-net
[xFG; {P1,P2,P3,P4}] 64.34 69.02
[xFG; {C12,P3,P4}] 62.52 67.00
[xFG; {P1, C23,P4}] 65.13 70.34
[xFG; {P1,P2, C34}] 63.64 68.00

Table 3: Classification accuracy (%) comparison with the
state-of-the-art results on the CUB-200-2011 dataset.

Approaches Accuracy
Deformable Part Descriptors (DPD) [3] 50.98
Part-based One-vs-One Features (POOF) [31] 56.78
Nonparametric Part Transfer [32] 57.84
Symbiotic model fitting [4] 59.4
Fisher vectors with original parts [6] (baseline) 62.7
Fisher vectors with fine-tuned parts 65.13

CNN off-the-shelf [20] 65.0
DPD + DeCAF [3] 64.96
Part-based R-CNNs [22] 76.37
Deep conv-net with original parts (baseline) 67.81
Deep conv-net with fine-tuned parts 70.34

are used for testing. The recognition rate rises from 60% to
70.5% with fine-tuned segmentation. All the above experi-
ments reveal the benefit of fine-tuned segmentation.

5. CONCLUSIONS

In this paper, we tackle the problem of over-segmentation,
which is frequently observed in the case of unsupervised
part detection on fine-grained visual concepts. Based on a
straightforward intuition, we perform a greedy algorithm and
a bruteforce search to merge and combine smaller parts into
large ones. Despite the simplicity, our algorithm provides a
significant accuracy gain on the CUB-200-2011 dataset based
on unsupervised part alignment [6], and achieves competi-
tive performance with both Fisher vectors and deep conv-net
features. By this, we verify that the improvement does come
from fine-tuned segmentation. In the future, we will gener-
alize our work to other part detectors such as [4] and other
fine-grained datasets such as [10].
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