
Fast Nearest Neighbor Search
in the Hamming Space

Zhansheng Jiang1(B), Lingxi Xie2, Xiaotie Deng1, Weiwei Xu3,
and Jingdong Wang4

1 Shanghai Jiao Tong University, Shanghai, People’s Republic of China
jzhsh1735@sjtu.edu.cn, deng-xt@cs.sjtu.edu.cn

2 Tsinghua University, Beijing, People’s Republic of China
198808xc@gmail.com

3 Hangzhou Normal University, Hangzhou, People’s Republic of China
weiwei.xu.g@gmail.com

4 Microsoft Research, Beijing, People’s Republic of China
jingdw@microsoft.com

Abstract. Recent years have witnessed growing interests in comput-
ing compact binary codes and binary visual descriptors to alleviate the
heavy computational costs in large-scale visual research. However, it is
still computationally expensive to linearly scan the large-scale databases
for nearest neighbor (NN) search. In [15], a new approximate NN search
algorithm is presented. With the concept of bridge vectors which corre-
spond to the cluster centers in Product Quantization [10] and the aug-
mented neighborhood graph, it is possible to adopt an extract-on-demand
strategy on the online querying stage to search with priority. This paper
generalizes the algorithm to the Hamming space with an alternative ver-
sion of k-means clustering. Despite the simplicity, our approach achieves
competitive performance compared to the state-of-the-art methods, i.e.,
MIH and FLANN, in the aspects of search precision, accessed data vol-
ume and average querying time.

Keywords: Approximate nearest neighbor search · Hamming space ·
Bridge vectors · Augmented neighborhood graph

1 Introduction

Compact binary codes [7,8] and binary visual descriptors [4–6] play a significant
role in computer vision applications. Binary vectors have a lot of advantages,
including the cheap storage cost and the low consumption in computing the
distance between binary vectors through a bitwise XOR operation. Despite the
efficiency of binary vector operations, it is often time-consuming to linearly scan
a large-scale database, seeking for the nearest neighbor.

This work was done when Zhansheng Jiang was an intern at Microsoft Research,
P.R. China.

c© Springer International Publishing Switzerland 2016
Q. Tian et al. (Eds.): MMM 2016, Part I, LNCS 9516, pp. 325–336, 2016.
DOI: 10.1007/978-3-319-27671-7 27

326 Z. Jiang et al.

A lot of efforts are made in accelerating nearest neighbor search. MIH [2]
is an exact nearest neighbor search algorithm. However, the index construction
and the query process for large-scale search databases are very time-consuming
and therefore impractical. FLANN [3] is an approximate nearest neighbor search
method, the precision of which is often low in the scenarios of long binary codes
or large-scale search databases, even with a large number of accessed data points.
In [15], the authors present the concept of bridge vectors, which are similar to
the cluster centers in Product Quantization [10], and construct a bridge graph
by connecting each bridge vector to its nearest vectors in the database. In the
online querying procedure, it is possible to organize data in a priority queue and
design an extract-on-demand strategy for efficient search.

Neighborhood graph search has attracted a lot of interests [12,15] because
of the low cost in extracting neighbor vectors and the good search performance.
The index structure is a directed graph connecting each vector to its nearest
neighbors in a search database. The graph search procedure involves measuring
the priority of each candidate. Accessed vectors are organized in a priority queue
ranked by their distance to the query vector. The top vector in the priority queue
is popped out one by one and its neighborhood vectors are pushed into the queue.
This process continues until a fixed number of vectors are accessed.

In this paper, we generalize the algorithm in [15] to the Hamming space. The
major novelty of this work lies in that we generalize the previous algorithm to the
Hamming space with an alternative version of k-means. Experiments reveal that,
despite the simplicity, our approach achieves superior performance to the state-
of-the-art methods, i.e., MIH and FLANN, in the aspects of search precision,
accessed data volume and average querying time.

The rest of this paper is organized as follows. In Sect. 2, we review previ-
ous works of nearest neighbor search in the Hamming space. We introduce our
approach in Sect. 3. Experiment results are presented in the next section. In the
end, we summarize this paper and state the conclusions.

2 Related Works

In this section, we will introduce two previous works which are popular for
nearest neighbor search in the Hamming space.

2.1 Multi-index Hashing

Multi-index hashing (MIH) algorithm is presented in [2] to achieve a fast NN
search in the Hamming space. The algorithm indexes the database m times
into m different hash tables, then during the search for each query, it collect
NN candidates through looking up the hash tables by taking advantage of the
Pigeonhole Principle.

In detail, each b-bit binary code h in the database is split into m disjoint
substrings h(1), . . . ,h(m), each of which is b/m in length, assuming that b is
divisible by m. Then the binary code is indexed in m hash tables according to

Fast Nearest Neighbor Search in the Hamming Space 327

its m substrings. The key idea rests on the following proposition: Given h,g,
and ‖h − g‖H ≤ r, where ‖ · ‖H denotes the Hamming norm, there exists k,
1 ≤ k ≤ m, such that

‖h(k) − g(k)‖ ≤ � r

m
�.

The proposition can be proved by the Pigeonhole Principle. During the search
for query q with substrings {q(i)}mi=1, we collect from ith hash table those entries
which are within the Hamming distance � r

m� to q(i), denoted as Ni(q). Then the
set N =

⋃m
i=1 Ni(q) will contain all binary codes within the Hamming distance

r to q.
The key idea stems from the fact that, in the case of n binary b-bit code

and 2b � n, when we build a full Hash table, most of the buckets are empty.
When we retrieve the r-neighbors of a query q, we need to traverse 2r buckets,
which is very costly when r is large. However, in this approach, many buckets
are merged together by marginalizing over different dimensions of the Hamming
space. As a result, the number of visited buckets is greatly reduced from 2r to
m · 2� r

m �. The downside is that not all the candidates in these merged buckets
are the r-neighbors of the query, so we need to examine them one by one.

In this approach, the search cost depends on the number of visited buckets
and the number of accessed candidates. As a result, a trade-off has to be made
between them by choosing a proper m. When m is small, � r

m� is large so we have
to traverse many buckets. When m is large, many buckets are merged together
so we have to check a large number of candidates one by one.

The major disadvantage of MIH algorithm lies in the heavy computational
costs. When the code length b is large, e.g., b = 512, either m or � r

m� is too large
so that the algorithm becomes less efficient, as shown in later experiments.

2.2 FLANN

FLANN [3] has been a well-know library for approximate nearest neighbor
(ANN) search in the Euclidean space. In [3], the authors of FLANN introduce a
method for ANN search in the Hamming space.

First, the algorithm performs a hierarchical decomposition of the Hamming
space to build a tree structure. It starts with clustering all the data points into
K clusters, where K is a parameter. The cluster centers are K points which are
randomly selected and each data point is assigned to its nearest center in the
Hamming distance. The decomposition is repeated recursively for each cluster
until the number of points in a cluster is less than a threshold, in which case this
cluster becomes a leaf node. The hierarchical decomposition of the database is
repeated for several times and multiple hierarchical trees are constructed. The
search performance significantly improves as the number of trees increases. The
search process is performed by traversing multiple trees in parallel, which is
presented in Algorithm 1 [3].

The approach of constructing multiple hierarchical trees is similar to k-d trees
[13] or hierarchical k-means trees [14]. However, in these approaches, the strat-
egy of building trees is well-optimized so the decomposition results are always

328 Z. Jiang et al.

Algorithm 1. Searching Parallel Hierarchical Clustering Trees
Input hierarchical trees T = {Ti}, query point q
Output K nearest approximate neighbors of q
Parameters the max number of examined points Lmax

Variables PQ: the priority queue storing the unvisited branches; R: the priority queue
storing the examined data points; L: the number of examined data points.

1: L ← 0
2: PQ ← ∅
3: R ← ∅
4: for each tree Ti do
5: call TraverseTree(Ti,PQ,R)
6: end for
7: while PQ �= ∅ and L < Lmax do
8: N ← top of PQ
9: call TraverseTree(N,PQ,R)

10: end while
11: return K nearest points to q from R
procedure TraverseTree(T,PQ,R)
1: if T is a leaf node then
2: examine all data points in T and add them in R
3: L ← L + |T |
4: else
5: C ← child nodes of T
6: Nq ← nearest node to q in C
7: C̄ ← C \ {Nq}
8: add all nodes in C̄ to PQ
9: call TraverseTree(Nq,PQ,R)

10: end if

the same and constructing multiple trees is unnecessary. In this approach, since
the K cluster centers are randomly selected and no further optimization is per-
formed, multiple different trees can be constructed. The benefit of constructing
multiple hierarchical trees is much more significant due to the fact that when
explored in parallel, each tree will retrieve different candidates, thus the proba-
bility of finding the exact NNs is increased.

3 Our Approach

3.1 Data Structure

The major part of our data structure is nearly the same as in [15], but we will
later generalize it to the Hamming space. The index structure consists of two
components: the bridge vectors and the augmented neighborhood graph.

Bridge Vectors. Inspired by Product Quantization [10] and inverted multi-
index [9], we propose to construct a set of bridge vectors, which are similar to

Fast Nearest Neighbor Search in the Hamming Space 329

the cluster centers in Product Quantization. We split the vectors in the database
into m dimensional chunks and cluster i-th dimensional chunk into ni centers.
The bridge vectors are defined as follows:

Y = ×m
i=1Si � {yj = [yT

j1 yT
j2 · · · yT

jm]T |yji ∈ Si}.

where Si is the center set for the i-th dimensional chunk. To be simplified and
without loss of generality, we assume that n1 = n2 = · · · = nm = n. There is a
nice property that finding the nearest neighbor over the bridge vectors is really
efficient, which takes only O(nd) in spite of the size of the set is nm. Moreover,
by adopting the Multi-sequence algorithm in [9], we can identify the second, the
third and more neighbors each in O(m2 log n) after sorting ni centers in each
dimensional chunk Si in O(mn log n).

The major difference between this work and [15] lies in that we
need to deal with the Hamming space, i.e., the conventional Euclidean
distance shall be replaced by the Hamming distance. In this respect,
we adopt an alternative version of k-means clustering for binary codes and the
Hamming distance to obtain the center set for each dimensional chunk. We first
initialize k cluster centers by randomly drawing k different data points from
the database. Then we run two steps, the assignment step and the update step,
iteratively. In the assignment step, we find the nearest center for each data point
and assign the point to the corresponding cluster. In the update step, for each
cluster, we find a Hamming vector which has a minimum average Hamming
distance to all cluster members as the new cluster center. This is simply done
by voting for each bit individually, i.e., each bit of each cluster center takes the
dominant case of this bit (0 or 1) assigned to this center.

Although our approach seems straightforward on the basis of k-
means, it provides an opportunity to transplant other algorithms
based on the Euclidean distance to the Hamming space. One of the
major costs in k-means clustering lies in the distance computation, and the cur-
rent version which computes the Hamming distance is much faster than the pre-
vious one which computes the Euclidean distance (5× faster). In the large-scale
database, this property helps a lot in retrieving the desired results in reasonable
time.

Augmented Neighborhood Graph. The augmented neighborhood graph is
a combination of the neighborhood graph G over the search database vectors X
and the bridge graph B between the bridge vectors Y and the search database
vectors X . The neighborhood graph G is a directed graph. Each node corre-
sponds to a vector xi, and each node xi is connected with a list of nodes that
correspond to its neighbors.

In the bridge graph B, each bridge vector yj in Y is connected to its nearest
vectors in X . To avoid expensive computation cost, we build the bridge graph
approximately by finding the top t (typically 1000 in our experiments) near-
est bridge vectors for each search database vector through the Multi-sequence

330 Z. Jiang et al.

Algorithm 2. Fast Nearest Neighbor Search in the Hamming Space (FNNS)
Input query point q, bridge graph B, neighborhood graph G
Output K nearest approximate neighbors of q
Parameters the max number of accessed points Lmax

Variables PQ: the priority queue storing the accessed points; L: the number of
accessed data points; b: the current bridge vector.

1: b ← nearest bridge vector to q through the Multi-sequence algorithm in [9]
2: PQ ← {b}
3: L ← 0
4: while L < Lmax do
5: if b is top of PQ then
6: call ExtractOnDemand(b,PQ)
7: else
8: t ← top of PQ
9: examine and push neighbor points of t in neighborhood graph G to PQ

10: L ← L + number of new points pushed to PQ
11: pop t from PQ
12: end if
13: end while
14: return K nearest points to q popped from PQ
procedure ExtractOnDemand(b,PQ)
1: examine and push neighbor points of b in bridge graph B to PQ
2: L ← L + number of new points pushed to PQ
3: pop b from PQ
4: b ← next nearest bridge vector to q through the Multi-sequence algorithm in [9]
5: push b to PQ

algorithm in [9] and then keeping the top b (typically 50 in our experiments)
nearest search database vectors for each bridge vector.

3.2 Search over the Augmented Neighborhood Graph

We first give a brief view of the search procedure in a neighborhood graph. In
this procedure, we first select one or more seed points, and then run a priority
search starting from these seed points. The priority search is very similar to the
breadth-first search. In the breadth-first search, we organize all visited points
in a queue, in which the points are sorted by the order that they are pushed
into the queue. However, in the priority search, we organize the visited points
in a priority queue, in which the points are sorted by the distance to the query
point. In detail, we first push all seed points into the priority queue. During each
iteration, we pop out the top element, which is the nearest to the query point,
from the priority queue and push its unvisited neighbors in the neighborhood
graph into the priority queue.

To exploit bridge vectors and the augmented neighborhood graph, we adopt
an extract-on-demand strategy. At the beginning of the search, we push the
bridge vector nearest to the query into the priority queue, and during the entire

Fast Nearest Neighbor Search in the Hamming Space 331

search procedure, we maintain the priority queue such that it consists exactly one
bridge vector. In each iteration, if the top element is a data point, the algorithm
proceeds as usual; if the top element is a bridge vector, we extract its neighbors
in the bridge graph and push the unvisited ones into the priority queue, and
in addition we extract the next nearest bridge vector using the Multi-sequence
algorithm [9] and push it into the priority queue. The algorithm ends when a
fixed number of data points are accessed.

4 Experiments

4.1 Datasets and Settings

Datasets. We evaluate our algorithm on three datasets: 1 million BRIEF
dataset, 1 million BRISK dataset and the 80 million tiny images dataset [1].
The BRIEF and BRISK datasets are composed of the BRIEF and BRISK fea-
tures of 1 million Flickr images crawled from the Internet. BRIEF and BRISK
features are 128-bit and 512-bit binary codes, respectively. For the 80 million
tiny images dataset, we learn Hash codes based on GIST features [11] through
LSH [8] and MLH [7] resulting in 512-bit binary codes. We carry on experiments
in three different scales of search databases, i.e., 1M, 10M and 79M.

Evaluation. We precompute the exact k-NNs as ground truth based on the
Hamming distance to each query in the test set. We use the precision to evaluate
the search quality. For k-NN search, the precision is computed as the ratio of
retrieved points that are the exact k nearest neighbors. We conduct experiments
on multiple settings with the number of neighbors k = 1, k = 10 and k = 50.

We construct the test set by randomly choosing 10K images excluded from
the search database. We download the source codes of FLANN and MIH method
and compare our approach with these two algorithms.

Settings. All the experiments are conducted on a single CPU core of server with
128G memory. In our approach, binary codes are split into 4 dimensional chunks
and each chunk is clustered into 50 centers. In FLANN, hierarchical clustering
uses the following parameters: tree number 4, branching factor 32 and maximum
leaf size 100.

4.2 Results

For FLANN and our approach, we report the search time and the precision with
respect to the number of accessed data points. Since MIH is an exact search
algorithm, the precision is always 1. We also report the best search time and the
number of accessed data points by tuning the parameter m.

According to Table 1, FLANN takes about 50% more search time than our
approach to achieve the same precision. Meanwhile, our approach only accesses
half of data points that FLANN accesses to achieve the same precision. For a
larger k, the advantage of our approach is more significant. MIH has similar

332 Z. Jiang et al.

Table 1. BRIEF 1 M Data

Algorithm Volume Time(ms) Precision

k = 1

FNNS 3000 0.350 0.974

5000 0.569 0.984

10000 1.248 0.993

FLANN 5000 0.508 0.947

10000 0.939 0.975

20000 1.856 0.990

MIH 21064 1.5 1.000

k = 10

FNNS 3000 0.395 0.978

5000 0.599 0.989

10000 1.342 0.996

FLANN 5000 0.509 0.831

10000 0.945 0.914

20000 1.831 0.964

MIH 49655 3.6 1.000

k = 50

FNNS 3000 0.517 0.971

5000 0.838 0.985

10000 1.726 0.995

FLANN 5000 0.522 0.693

10000 0.963 0.840

20000 1.855 0.932

MIH 72888 5.5 1.000

Table 2. BRISK 1 M Data

Algorithm Volume Time(ms) Precision

k = 1

FNNS 1000 0.122 0.755

6000 0.865 0.971

20000 3.296 0.997

FLANN 10000 1.566 0.859

30000 4.578 0.959

60000 9.263 0.988

MIH 776410 87.4 1.000

k = 10

FNNS 1000 0.142 0.698

6000 0.899 0.957

20000 3.517 0.995

FLANN 10000 1.620 0.540

30000 4.691 0.836

60000 9.508 0.948

MIH 851400 97.6 1.000

k = 50

FNNS 1000 0.231 0.612

6000 1.281 0.932

20000 4.655 0.991

FLANN 10000 1.641 0.234

30000 4.758 0.633

60000 9.691 0.870

MIH 891010 103.4 1.000

Table 3. LSH 1M Data

Algorithm Volume Time(ms) Precision

k = 1

FNNS 6000 0.953 0.913

20000 3.976 0.983

50000 11.504 0.996

FLANN 30000 4.917 0.909

50000 8.299 0.955

100000 17.083 0.990

MIH 516118 84.1 1.000

k = 10

FNNS 6000 0.989 0.894

20000 4.159 0.978

50000 12.101 0.995

FLANN 30000 5.000 0.724

50000 8.331 0.850

100000 17.011 0.960

MIH 596586 97.5 1.000

k = 50

FNNS 6000 1.307 0.859

20000 5.197 0.968

50000 14.547 0.992

FLANN 30000 4.875 0.521

50000 8.209 0.715

100000 16.906 0.917

MIH 645739 105.3 1.000

Table 4. MLH 1M Data

Algorithm Volume Time(ms) Precision

k = 1

FNNS 3000 0.551 0.971

5000 0.981 0.989

10000 1.905 0.997

FLANN 10000 1.506 0.905

30000 4.413 0.980

50000 7.415 0.992

MIH 302475 52.0 1.000

k = 10

FNNS 3000 0.563 0.952

5000 1.006 0.981

10000 1.947 0.995

FLANN 10000 1.507 0.679

30000 4.476 0.902

50000 7.479 0.960

MIH 399496 69.9 1.000

k = 50

FNNS 3000 0.747 0.920

5000 1.295 0.964

10000 2.448 0.988

FLANN 10000 1.534 0.415

30000 4.382 0.774

50000 7.375 0.904

MIH 472219 79.7 1.000

Fast Nearest Neighbor Search in the Hamming Space 333

Table 5. LSH 10M Data

Algorithm Volume Time(ms) Precision

k = 1

FNNS 20000 4.931 0.913

50000 13.835 0.962

100000 31.880 0.980

FLANN 80000 16.525 0.847

100000 19.900 0.873

200000 57.020 0.937

MIH 4302972 719.1 1.000

k = 10

FNNS 20000 5.028 0.901

50000 14.115 0.959

100000 32.456 0.981

FLANN 80000 16.585 0.588

100000 19.867 0.639

200000 59.723 0.799

MIH 5320692 890.6 1.000

k = 50

FNNS 20000 6.361 0.873

50000 16.929 0.945

100000 37.501 0.974

FLANN 80000 16.544 0.377

100000 19.936 0.432

200000 65.875 0.648

MIH 5774213 965.6 1.000

Table 6. MLH 10M Data

Algorithm Volume Time(ms) Precision

k = 1

FNNS 10000 2.640 0.978

20000 5.407 0.992

50000 14.830 0.998

FLANN 80000 15.809 0.939

100000 19.447 0.954

200000 63.566 0.983

MIH 2289901 404.3 1.000

k = 10

FNNS 10000 2.603 0.968

20000 5.337 0.988

50000 14.569 0.998

FLANN 80000 15.647 0.802

100000 19.583 0.841

200000 67.699 0.934

MIH 3173628 558.5 1.000

k = 50

FNNS 10000 3.262 0.947

20000 6.308 0.979

50000 16.175 0.995

FLANN 80000 15.908 0.632

100000 19.939 0.696

200000 67.609 0.868

MIH 3735299 665.3 1.000

Table 7. LSH 79M Data

Algorithm Volume Time(ms) Precision

k = 1

FNNS 20000 9.682 0.774

50000 25.215 0.862

100000 53.279 0.909

FLANN 80000 36.267 0.734

100000 44.545 0.756

200000 91.143 0.824

MIH 23172087 7042.2 1.000

k = 10

FNNS 20000 9.011 0.784

50000 23.288 0.881

100000 49.710 0.930

FLANN 80000 40.065 0.383

100000 49.659 0.413

200000 92.129 0.527

MIH 37399803 11513.3 1.000

k = 50

FNNS 20000 11.113 0.750

50000 28.187 0.859

100000 58.036 0.916

FLANN 80000 40.467 0.194

100000 47.267 0.219

200000 91.466 0.318

MIH 41137255 12583.8 1.000

Table 8. MLH 79M Data

Algorithm Volume Time(ms) Precision

k = 1

FNNS 20000 8.150 0.969

50000 21.911 0.989

100000 47.077 0.995

FLANN 80000 36.120 0.869

100000 48.690 0.884

200000 75.446 0.929

MIH 11380955 3396.6 1.000

k = 10

FNNS 20000 8.227 0.961

50000 22.026 0.987

100000 47.036 0.995

FLANN 80000 40.873 0.600

100000 49.348 0.637

200000 76.483 0.755

MIH 20314128 5994.4 1.000

k = 50

FNNS 20000 10.522 0.940

50000 26.882 0.980

100000 55.765 0.992

FLANN 80000 39.798 0.354

100000 46.901 0.398

200000 73.510 0.554

MIH 24028084 6697.4 1.000

334 Z. Jiang et al.

(a) MLH 79M positive examples (b) MLH 79M negative examples

(c) LSH 79M positive examples (d) LSH 79M negative examples

Fig. 1. The three lines of each group represent the ground truth, the result of our
approach and the result of FLANN, respectively. The leftmost image in each case is
the query. For positive examples (the left-hand side), the red box indicates the sample
that our approach hits, but FLANN misses. For negative examples (the right-hand
side), the blue box indicates the sample that our approach misses, but FLANN hits
(Color figure online).

performance to our approach when k is small while our approach, with a larger
k, only takes about half search time cost to achieve a 0.99 precision.

Table 2 shows the performance on 512-bit binary codes. For a large binary
code length, our approach significantly outperforms the other two methods.
Compared to FLANN, our approach achieves a 0.99 precision in merely 1/3

Fast Nearest Neighbor Search in the Hamming Space 335

search time cost. MIH accesses most of the data points in the search database
to get the exact nearest neighbors, which makes it too time-consuming.

From Tables 3, 4, 5, 6, 7 and 8, experiments on the 80 million tiny images
dataset show that our approach is scalable to large-scale search databases.
Among 79M candidates, FLANN only has a 0.318 precision for LSH and a 0.554
precision for MLH when k = 50 while our approach can reaches a 0.916 precision
for LSH and a 0.992 precision for MLH with less search time cost. However, MIH
takes extremely high search time cost to retrieve the exact nearest neighbors.

Besides, Fig. 1(a) and (c) show positive examples that our approach out-
performs FLANN while Fig. 1(b) and (d) show negative examples that FLANN
outperforms our approach.

4.3 Analysis

Graph Construction Costs. The construction of the neighborhood graph and
the bridge graph is the major part of extra computation compared to FLANN,
but it is an offline task which is performed only once, thus acceptable. Exact
neighborhood search for each data point in the search database may be imprac-
tical especially for large-scale search databases, therefore in experiments, we
adopt FLANN as an approximate algorithm to build the neighborhood graph
among the search database.

Graph Storage Costs. Both the neighborhood graph and the bridge graph are
organized by attaching an adjacent list to each data point or bridge vector. By
analyzing the total number of bridge vectors and adjacent lists, we can easily
derive that the additional storage is O(nd + Nk + nmb), with N the number of
data points, k the length of data point adjacent lists, nm the number of bridge
vectors and b the length of bridge vector adjacent lists.

Advantages over FLANN and MIH. Compared to FLANN and MIH, our
approach enjoys two-fold advantages. On the one hand, both the neighborhood
graph and the bridge graph structure provide an efficient way to retrieve high-
quality NN candidates thanks to the close relationship built on the graph. On the
other hand, candidates retrieved in such a manner are usually better than those
retrieved by FLANN because the neighborhood graph provides a better order
of data access. FLANN does not produce as good performance as our approach
especially in large-scale search databases and the precision is very low even when
a large number of data points are accessed. For MIH, the index construction and
the query process are very time-consuming and therefore impractical for large-
scale search databases.

5 Conclusions

In this paper, we generalize the algorithm in [15] to the Hamming space with an
alternative version of k-means clustering based on the Hamming distance. The
simple approach also inspires later research related to the Euclidean space and

336 Z. Jiang et al.

the Hamming space. Experiments show that our algorithm outperforms state-of-
the-art approaches and has significant improvement especially in the scenarios
of longer binary codes or larger databases.

Acknowledgments. Weiwei Xu is partially supported by NSFC 61322204.

References

1. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set
for nonparametric object and scene recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 30(11), 1958–1970 (2008)

2. Norouzi, M., Punjani, A., Fleet, D.J.: Fast search in hamming space with multi-
index hashing. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3108–3115. IEEE (2012)

3. Muja, M., Lowe, D.G.: Fast Matching of Binary Features. In: 9th Conference on
Computer and Robot Vision, pp. 404–410. IEEE (2012)

4. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent
elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)

5. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable
keypoints. In: IEEE International Conference on Computer Vision, pp. 2548–2555.
IEEE (2011)

6. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative
to SIFT or SURF. In: IEEE International Conference on Computer Vision, pp.
2564–2571. IEEE (2011)

7. Norouzi, M., Blei, D.M.: Minimal loss hashing for compact binary codes. In: Pro-
ceedings of the 28th International Conference on Machine Learning, pp. 353–360
(2011)

8. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Com-
puting, pp. 380–388. ACM (2002)

9. Babenko, A., Lempitsky, V.: The inverted multi-index. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3069–3076. IEEE (2012)

10. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2011)

11. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation
of the spatial envelope. Int. J. Comput. Vis. 42, 145–175 (2001)

12. Wang, J., Wang, J., Zeng, G., Tu, Z., Gan, R., Li, S.: Scalable k-NN graph construc-
tion for visual descriptors. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1106–1113. IEEE (2012)

13. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18, 509–517 (1975)

14. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2161–2168. IEEE
(2006)

15. Wang, J., Wang, J., Zeng, G., Gan, R., Li, S., Guo, B.: Fast neighborhood graph
search using cartesian concatenation. In: IEEE International Conference on Com-
puter Vision, pp. 2128–2135. IEEE (2013)

	Fast Nearest Neighbor Search in the Hamming Space
	1 Introduction
	2 Related Works
	2.1 Multi-index Hashing
	2.2 FLANN

	3 Our Approach
	3.1 Data Structure
	3.2 Search over the Augmented Neighborhood Graph

	4 Experiments
	4.1 Datasets and Settings
	4.2 Results
	4.3 Analysis

	5 Conclusions
	References

