
CHEN ET.AL: SAMPLEAHEAD – ONLINE CLASSIFIER-SAMPLER COMMUNICATION 1

SampleAhead: Online Classifier-Sampler
Communication for Learning from
Synthesized Data
Qi Chen, Weichao Qiu, Yi Zhang
{qchen42,wqiu7,yzh}@jhu.edu

Lingxi Xie(�), Alan L. Yuille
198808xc@gmail.com,alan.yuille@jhu.edu

Department of Computer Science,
The Johns Hopkins Univerisity
* This work is supported by IARPA via DOI/IBC contract

#D17PC00345 and ONR grant N00014-15-1-2356.

Abstract

State-of-the-art techniques of computer vision are mostly data-driven, but collecting
and manually labeling a large scale dataset is both difficult and expensive. A promising
alternative is to use synthesized training data, so that the dataset size can be significantly
enlarged with little human labor. But, this raises an important problem: given an infinite
data space, how to effectively sample a finite subset to train a visual recognition model?

This paper presents an approach for learning from synthesized data effectively. The
motivation is straightforward – increasing the probability of seeing difficult training data.
We introduce a module named SampleAhead to formulate the learning process into an
online communication between a classifier and a sampler, and update them iteratively.
In each round, we adjust the sampling distribution according to the classification results,
and train the classifier using the data sampled from the updated distribution. Experiments
are performed by introducing synthesized images rendered from ShapeNet models to
assist PASCAL3D+ classification. Our approach enjoys higher classification accuracy,
especially in the scenario of a limited number of training samples. This demonstrates its
efficiency in exploring the infinite data space.

1 Introduction
Recent progress in computer vision has been boosted by deep neural networks trained with
a large amount of labeled data. Researchers made every effort to increase the volume [8, 33]
and representativeness [9] of these datasets, however, the collection and annotation remain
labor-intensive and error-prone. A smart idea to address this problem is to generate synthe-
sized data (e.g., from a virtual world [3, 28]) with a minimal amount of human labor.

But, because the synthesized environment allows us to sample an infinite amount of data,
an important yet unstudied problem is raised: given a constrained time, how to effectively
sample a finite subset so as to maximize the performance of a vision system? We address this
problem with object pose estimation, a fundamental task in 3D computer vision. Note that
for some specific tasks such as object pose estimation, integrating synthesized data helps a
lot in improving recognition accuracy, but previous approaches often sampled data uniformly
from the synthesized space [28], leading to a redundant set of easy training cases, while the
hard cases cannot get trained sufficiently.

c© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Wu, Song, Khosla, Tang, and Xiao} 2014

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M {}Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Butler, Wulff, Stanley, and Black} 2012

Citation
Citation
{Su, Qi, Li, and Guibas} 2015

Citation
Citation
{Su, Qi, Li, and Guibas} 2015

2 CHEN ET.AL: SAMPLEAHEAD – ONLINE CLASSIFIER-SAMPLER COMMUNICATION

Inspired by previous work [25] which adjusted data weights according to their difficulties
in an online manner, we suggest a learning system which is composed of two components,
with a classifier (parameterized by a set of network weights θ) dealing with the recognition
task, and a sampler (parameterized by a class distribution P(·) over viewpoint parameters,
e.g., azimuth and elevation angles) sampling training data from the infinite data space. The
major algorithm for optimization is similar to AdaBoost [11], i.e., increasing the weight of
difficult samples in training the classifier.

The training process involves updating θ and P(·) in an iterative manner. The unit that
controls the classifier-sampler communication is named SampleAhead. In each iteration,
the distribution P(·) is determined by the testing results in a standalone validation set, and
then used to sample a new batch of data for training the classifier (updating the parameter
θ). To improve computational efficiency, we partition the entire space into a finite number
of buckets. In each training epoch, the classifier is first applied on a validation set to estimate
the difficulty of each bucket, and the sampler follows to construct a new training subset. This
is a two-stage sampling process. Every time, a bucket is first sampled from the distribution
P(·), and then a datum is sampled from the bucket following a uniform distribution. This
iteration continues until the maximal number of rounds is reached.

We conduct experiments in a challenging task known as object pose estimation, which
aims at predicting the viewpoint from which we capture a 2D image of an object. We use
PASCAL3D+ [34] as the target (testing) dataset, and render a large number of synthesized
images from ShapeNet [4]. In comparison to the baseline approach [28] which always sam-
pled the data space from a fixed distribution, our method produces higher recognition ac-
curacy especially in more challenging scenarios, in agreement with our motivation. In par-
ticular, when the number of extra training cases is limited, the advantage of our approach
becomes even more significant.

The remainder of this paper is organized as follows. Section 2 briefly reviews related
work, and Section 3 illustrates our overall framework as well as the joint optimization ap-
proach. After experiments are shown in Section 4, we conclude this work in Section 5.

2 Related Work
Training machine learning systems for computer vision tasks, especially deep neural net-
works, often requires sufficient data to prevent over-fitting. The availability of large-scale
datasets facilitates the ability of training very deep neural networks [17]. However, re-
searchers often required a considerable amount of labor to collect and annotated a large-scale
dataset [8, 33], or a smaller one with reasonable variability [9, 34].

On the other hand, the rapid development of computer graphics allows researchers to
construct an unreal environment [22, 35], and sample a large number of annotated synthe-
sized data with little human labor [4, 16]. Another possibility is to apply generative deep
learning models to simulate the distribution of real data [13]. It has been verified that syn-
thesized [5, 23, 28, 31] or generated [26] data are helpful in training better models. However,
in either case, we are provided with an infinite space of training data, and facing the issue
of making use of these synthesized data in a constrained time, i.e., the number of sampled
data is finite. A related area to this problem is named Active Vision [1, 2], in which one
is allowed to manipulate the viewpoint of the camera(s) in order to explore and learn richer
visual knowledge from the environment. Recently, this idea was also applied to train robots
in the task of visual question answering [7, 14].

Citation
Citation
{Shrivastava, Gupta, and Girshick} 2016

Citation
Citation
{Freund and Schapire} 1997

Citation
Citation
{Xiang, Mottaghi, and Savarese} 2014

Citation
Citation
{Chang, Funkhouser, Guibas, Hanrahan, Huang, Li, Savarese, Savva, Song, Su, etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Su, Qi, Li, and Guibas} 2015

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Wu, Song, Khosla, Tang, and Xiao} 2014

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M {}Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Xiang, Mottaghi, and Savarese} 2014

Citation
Citation
{Qiu and Yuille} 2016

Citation
Citation
{Zhang, Qiu, Chen, Hu, and Yuille} 2016

Citation
Citation
{Chang, Funkhouser, Guibas, Hanrahan, Huang, Li, Savarese, Savva, Song, Su, etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Johnson, Hariharan, vanprotect unhbox voidb@x penalty @M {}der Maaten, Fei-Fei, Zitnick, and Girshick} 2017

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Chen, Wang, Li, Su, Wang, Tu, Lischinski, Cohen-Or, and Chen} 2016

Citation
Citation
{Richardson, Sela, and Kimmel} 2016

Citation
Citation
{Su, Qi, Li, and Guibas} 2015

Citation
Citation
{Varol, Romero, Martin, Mahmood, Black, Laptev, and Schmid} 2017

Citation
Citation
{Shrivastava, Pfister, Tuzel, Susskind, Wang, and Webb} 2017

Citation
Citation
{Bajcsy} 1988

Citation
Citation
{Blake and Yuille} 1993

Citation
Citation
{Das, Datta, Gkioxari, Lee, Parikh, and Batra} 2017

Citation
Citation
{Gordon, Kembhavi, Rastegari, Redmon, Fox, and Farhadi} 2017

CHEN ET.AL: SAMPLEAHEAD – ONLINE CLASSIFIER-SAMPLER COMMUNICATION 3

There exist several ways of sampling training data from a given distribution. A straight-
forward solution is bootstrapping, which sampled training data with replacement. Researchers
soon developed other algorithms to increase the probability of sampling a hard example, such
as AdaBoost [11] and a series of negative example mining methods [24, 29] to assist training
in SVM [10] and CNN [15]. At a finer level, it is also possible to adjust the weights of
different elements, so that the loss function would lean towards penalizing the errors in hard
examples [19, 25, 27, 32]. All these approaches were verified to outperform uniform sam-
pling, especially when the easy examples occupy a considerable fraction of the data space.

In this paper, we focus on a more efficient sampling strategy. Different from previous
work, we consider an infinite (continuous) data space. Instead of sampling from each in-
stance (e.g., an image [27] or a regional feature [25]), we partition the entire data space into
a finite number of buckets and perform two-stage sampling, detailed in Section 3.3.

3 Approach

3.1 Background and Motivation
The goal of this work is to train an effective vision model from an infinite synthesized dataset.
Throughout this paper, we assume the target model to be a classifier, denoted by C: Y =
f(X;θ), where X and Y are the input and output, e.g., an image matrix and a one-hot vector,
and θ are the parameters in the model f(·), e.g., the weights of a neural network.

Training data are sampled from an image space X . The sampling process is a function
X = g(U), where U are the parameters (e.g., object position, viewpoint, lighting, etc.) re-
quired by the generator g(·). Note that U is sampled from the parameter space U , which
is continuous and thus infinite. The core of this paper is to sample a number of U’s at
each training iteration. Following a large corpus of previous work, we assume that each
U is sampled independently and identically from a distribution P(·) defined in the parameter
space U . We denote the process of generating a training data by X = g(U);U∼ P.

A naive example is to set P(·) to be a uniform distribution over U , i.e., P(U) ≡ const
for all U ∈ U . This is equivalent to generating a sufficient large synthesized dataset at the
beginning, and traverse each item orderly. However, in most scenarios, the classifier are
dealing with relatively easy training cases, e.g., those cases that are already been correctly
classified, so that the weights θ cannot get trained efficiently.

3.2 The SampleAhead Module
To deal with the above issue, we introduce a module named SampleAhead. This module up-
dates the data distribution P(·) before each sampling stage (in practice, before each training
epoch), increasing the probability that hard examples are sampled and fed into the classifier.

Ideally, at the t-th iteration, for each sample U, we hope that P(t)(U) tends to have peaks
at the hard cases. We start with defining the difficulty of U, denoted by d(t−1)(U), as the
probability that X= g(U) is not correctly classified by the classifier after the t−1-st iteration.
However, directly computing d(t−1)(U) for every U could be sensitive to noise. We make
use of kernel estimation, which randomly distributes a set of M probes V = {V1,V2, . . . ,VM}
over the entire space U , and estimate the difficulty of U by:

d(t−1)(U) =
∑

M
m=1d(t−1)(Vm) ·ω(U,Vm)

∑
M
m=1ω(U,Vm)

, (1)

Citation
Citation
{Freund and Schapire} 1997

Citation
Citation
{Rowley, Baluja, and Kanade} 1998

Citation
Citation
{Sung} 1996

Citation
Citation
{Felzenszwalb, Girshick, McAllester, and Ramanan} 2010

Citation
Citation
{He, Zhang, Ren, and Sun} 2014

Citation
Citation
{Loshchilov and Hutter} 2015

Citation
Citation
{Shrivastava, Gupta, and Girshick} 2016

Citation
Citation
{Simo-Serra, Trulls, Ferraz, Kokkinos, and Moreno-Noguer} 2014

Citation
Citation
{Wang and Gupta} 2015

Citation
Citation
{Simo-Serra, Trulls, Ferraz, Kokkinos, and Moreno-Noguer} 2014

Citation
Citation
{Shrivastava, Gupta, and Girshick} 2016

4 CHEN ET.AL: SAMPLEAHEAD – ONLINE CLASSIFIER-SAMPLER COMMUNICATION

Render
Parameters

Inference

Initial Sampling
Probability

Updated Sampling
Probability

V
irt

ua
l W

or
ld

Render
Parameters

Initial
Parameters

Synthesized
Set 0

Render
Prediction Epoch 0

SampleAhead
Module

Render
Parameters

Synthesized
Set 1

Render
Prediction Epoch 1

SampleAhead
Module

…… Epoch n
Render

Difficulty
Classifier
ParametersProbe Set

Figure 1: The overall framework of our approach. Without the SampleAhead module, our
approach degenerates to that fixing a synthesized dataset at the very beginning and traversing
all training samples orderly. Each SampleAhead module conducts an interactive process
between the classifier and the sampler, in which the classification results in a standalone
probe set are used to estimate the new training data distribution, from which the sampler
generates the new set for the next training epoch.

where
d(t−1)(Vm) = 1−Pr

[
f
(

g(Vm) ;θ
(t−1)

)
is correct

]
, (2)

and ω(U,Vm) is the weight added to U by the probe Vm, e.g., ω(U,Vm) is inversely pro-
portional to the `2-distance between U and Vm. The probe set V is often large in order to
guarantee the coverage over the space U .

The next step is to define the probability distribution function P(t)(U) for each U ∈ U .
Inspired by AdaBoost [11], we take the classification results in the previous iteration into
consideration. Mathematically,

P(t)(U) ∝ α ·P(0)(U)+(1−α) ·P(0)(U) · eβ ·d(t−1)(U), (3)

where α and β are hyper-parameters. We use P(0)(·) rather than P(t−1)(·) to avoid the distri-
bution from being modified too much. This strategy improves training stability.

3.3 Approximation
Note that accurately sampling from P(t) in Eqn (3) requires computing the function value at
each U, which is computationally intractable given a large M. Here we provide an approx-
imation for efficient online sampling. The basic idea is to partition the entire space U into
a finite number (K) of buckets, i.e., U =

⋃K
k=1Bk. Each bucket is a continuous subset of U ,

and any two different buckets do not intersect with each other. Thus, we simplify Eqn (1) by
only considering the probes in the same bucket, namely,

w(U,Vm) = I[∃k;U ∈ Bk ∧Vm ∈ Bk], (4)

where I[·] is the indicator function. Note that for any Bk, every element U ∈ Bk has the same
distance to each probe, thus the same difficulty d(t−1)

k (omitting U):

d(t−1)
k =

∑Vm∈Bk
d(t−1)(Vm)

|V ∪Bk|
. (5)

Citation
Citation
{Freund and Schapire} 1997

CHEN ET.AL: SAMPLEAHEAD – ONLINE CLASSIFIER-SAMPLER COMMUNICATION 5

This actually leads to a two-stage sampling process, in which a bucket-level probability is
computed for each bucket:

P(t)
k =

∫
U∈Bk

P(t)(U) dU. (6)

Every time we hope to generate a U ∈ U , we first determine the bucket index k from a finite
set {1,2, . . . ,K}, and then sample a U from Bk following a uniform distribution.

In practice, we update P(t)
k after each training epoch. This is not done after each mini-

batch because of its large computational costs (requiring a complete testing in the probe
set which is often large). At the beginning, P(0)

k is simply defined as the probability that a

uniform sampling in U falls into Bk. In updating P(t)
k with Eqn (3), note that both P(0)(U)

and d(t−1)(U) are constants within Bk, thus Eqn (3) is simplified as:

P(t)
k = α ·P(0)

k +(1−α) ·P(0)
k · e

β ·d(t−1)
k . (7)

The definition of buckets differs from case to case, and will be discussed in experiments.
Of course, there are some technical details that can be discussed, such as sharing/reusing

data in the training set and the probe set, which we will investigate in the future.

4 Experiments

4.1 MNIST: Digit Classification
• Dataset and Settings

We first evaluate our approach on a toy problem, which is handwritten digit classification
on the MNIST dataset [18]. MNIST contains 60,000 training images and 10,000 testing
images. The resolution of each image is 28× 28. We use this relatively simple dataset to
observe the behavior of our approach on a series of data augmentation as well as discover
the advantage of our approach with respect to the number of training samples.

Following [6], we consider seven types of augmentation, including digit rotation, ver-
tical/horizontal scaling, horizontal/vertical shifting, and horizontal/vertical shearing. Each
digit is processed by one and exactly one augmentation. We further partition each type
into a finer stage according to the transformation parameter. The rotation angle is randomly
sampled from [−15◦,15◦], and it is divided into four bins [−15◦,−7.5◦)∪ [−7.5◦,0◦)∪
[0◦,7.5◦)∪ [7.5◦,15◦]. All other scaling/shifting/shearing parameters are divided into two
bins. Thus, we obtain 16 bins for each original training image.

The bucket set {Bk}K
k=1 is the Cartesian product of the class set (10 elements) and the bin

set (16 elements), i.e., there are 10×16 = 160 buckets in total. This is to say, we assume, by
Eqn (4), that all samples with the same class and a similar transformation share the same dif-
ficulty, which is reasonable. We randomly sample 100 images from each bucket to compose
of the probe set V (16,000 probes in total).

• Results and Analysis
We use LeNet [18] as the classifier f(·;θ). It contains 3 convolutional, 2 pooling and

2 fully-connected layers. The network is trained with Stochastic Gradient Descent. Each
iteration contains a mini-batch of size 76 (60 real data and 16 synthesized data). The initial
learning rate is 5× 10−3, decayed with the inv policy, and the weight decay is fixed to be
5× 10−4. The original training process lasts for 10,000 iterations, but we allow a larger

Citation
Citation
{LeCun, Bottou, Bengio, and Haffner} 1998

Citation
Citation
{Ciresan, Meier, Gambardella, and Schmidhuber} 2010

Citation
Citation
{LeCun, Bottou, Bengio, and Haffner} 1998

6 CHEN ET.AL: SAMPLEAHEAD – ONLINE CLASSIFIER-SAMPLER COMMUNICATION

of Iterations 10,000 20,000 30,000 40,000 50,000
Uniform Samp. 0.890±0.021 0.835±0.024 0.816±0.021 0.796±0.018 0.793±0.035
Our Approach 0.819±0.025 0.787±0.019 0.756±0.022 0.758±0.026 0.757±0.014
p-value 6.407×10−5 2.434×10−3 4.454×10−4 8.097×10−3 3.054×10−2

Table 1: Classification error rates (%) on the MNIST dataset with respect to the number of
sampled images. The average and standard deviation numbers come from 10 individual runs.
The p-values are obtained from standard t-tests over these 10 pairs.

number (20,000, 30,000, 40,000 and 50,000) of iterations so that more augmented data are
seen. Without synthesized data, the error rate hardly goes down after 10,000 iterations.

Results are summarized in Table 1. We can observe that our approach works consistently
better than the baseline approach (performing uniform sampling in the data space). In par-
ticular, when the model is constrained to see a limited amount of training data, the advantage
of our approach becomes even more significant, e.g., with 10,000 iterations, the absolute and
relative error rate drops brought by our approach are 0.071% and 7.98%, respectively, with
a p-value of 6.407× 10−5, demonstrating strong statistical significance. This implies that
our approach explores the data space more efficiently by aggressively looking for those chal-
lenging training samples. However, as the number of training data increases, the advantage
becomes smaller, e.g., with 50,000 iterations, the absolute and relative error rate drops are
0.034% and 4.29%, respectively, with a p-value of 3.054×10−2 which still suggests statis-
tical significance. This is MNIST is relatively simple: given a sufficient amount of training
data, random sampling can gradually achieve comparable performance to our approach.

4.2 ShapeNet: Object Pose Estimation

• Dataset and Settings
We move to a natural image dataset named PASCAL3D+ [34], a challenging corpus for

3D object detection and pose estimation. The 12 rigid object classes (with more than 3,000
images per class) in the PASCALVOC dataset [9] were augmented with 3D annotations,
exhibiting more variability than other 3D datasets.

Due to the limited amount of data, we follow a recent baseline named RenderForCNN [28]
which generated synthesized data to assist network training. To construct an augmented
training set, a joint distribution of viewpoint angles and camera distances was first estimated
from the PASCAL3D+ real training set, and 2.4 million synthesized images were rendered
from 3D models of ShapeNet [4] following the same distribution. This is to say, the data
distribution is fixed throughout the entire training process. Differently, we add the SampleA-
head module (Eqn (7)) to enable updating data distribution according to validation.

Note that α in Eqn (7) controls the fraction of newly generated data. Setting α = 1.0
causes our algorithm degenerate to the baseline, i.e., freezing the distribution P(t) ≡ P(0)

throughout the entire training process. In practice, we set α = 0.9 to take advantage of
new data meanwhile preventing the training process from being slowed down by the time-
consuming data generation (image rendering) process.

Based on these settings, we perform two challenging tasks, known as object-detection-
and-pose-estimation [28] and viewpoint prediction [30].

• Object Detection and Pose Estimation
In the first task, the system is asked to detect the object and estimate its azimuth view

Citation
Citation
{Xiang, Mottaghi, and Savarese} 2014

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M {}Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Su, Qi, Li, and Guibas} 2015

Citation
Citation
{Chang, Funkhouser, Guibas, Hanrahan, Huang, Li, Savarese, Savva, Song, Su, etprotect unhbox voidb@x penalty @M {}al.} 2015

Citation
Citation
{Su, Qi, Li, and Guibas} 2015

Citation
Citation
{Tulsiani and Malik} 2015

CHEN ET.AL: SAMPLEAHEAD – ONLINE CLASSIFIER-SAMPLER COMMUNICATION 7

Approach L aero. bicy. boat bus car chair table moto. sofa train tv mean
[28] 4 54.0 50.5 15.1 57.1 41.8 15.7 18.6 50.8 28.4 46.1 58.2 39.7
Baseline 4 62.2 59.0 17.6 61.6 48.2 17.2 20.5 60.0 34.9 51.6 60.5 44.8
Ours 4 63.2 59.8 18.8 62.7 47.1 19.7 18.6 59.7 34.2 51.2 59.7 45.0
[28] 8 44.5 41.1 10.1 48.0 36.6 13.7 15.1 39.9 26.8 39.1 46.5 32.9
Baseline 8 55.8 52.2 14.7 48.2 42.9 15.5 16.6 51.0 29.3 48.0 45.9 38.2
Ours 8 60.0 52.6 15.2 53.6 44.2 18.6 15.3 53.1 31.2 47.4 49.9 40.1
[28] 16 27.5 25.8 6.5 45.8 29.7 8.5 12.0 31.4 17.7 29.7 31.4 24.2
Baseline 16 39.8 34.3 9.4 51.8 35.5 11.9 17.6 36.3 20.3 35.2 29.9 29.3
Ours 16 43.6 40.0 8.7 57.2 38.6 14.9 15.1 37.5 23.7 35.6 36.0 31.9
[28] 24 21.5 22.0 4.1 38.6 25.5 7.4 11.0 24.4 15.0 28.0 19.8 19.8
Baseline 24 28.4 23.4 7.7 39.5 32.1 10.6 12.6 28.1 19.7 38.5 17.9 23.5
Ours 24 37.9 30.3 8.7 47.4 33.9 13.5 10.9 28.7 22.8 39.0 26.3 27.2

Table 2: Accuracy (%) of object detection and pose estimation. L is the number of azimuth
bins. A testing result is accepted if both the class and pose are predicted correctly. We
use a later version released by the same authors of [28] as our “Baseline”, which performs
considerably better than the original version. The bottle class is not included because its
azimuth angle is almost unrecognizable.

angle simultaneously (the elevation view angle is not considered). Following [34], the output
is considered correct if it is accepted by both object detection and pose estimation. The
correctness object detection is measured by the IOU between the predicted and ground-truth
bounding boxes. For view angle prediction, we partition the entire 360◦ azimuth range into
4, 8, 12 and 24 bins, and compute the accuracy that the predicted angle falls into the same
bin as the ground-truth angle. 1 out of of the 12 classes (bottle) is not evaluated in this task,
as the azimuth angle of such objects is unrecognizable.

The synthesized training set contain 3D objects captured from an azimuth angle of
[0◦,360◦) and an elevation angle of [−90◦,90◦). We partition the viewpoint hemisphere
into 18× 12 bins of an equal size. Adding the 11 classes, we have 11×18×12 = 2376
buckets in total. The validation subset from the PASCAL3D+ is used as the probe set V .

Following the baseline [28], we extract region proposals from RCNN [12], and use these
images to train an AlexNet [17] for joint object and viewpoint classification (11×L classes,
L = 4,8,12,24). All technical details (learning rate, weight decay, etc.) remain the same as
the baseline. We train the network for 60,000 iterations, while the baseline needs 120,000
iterations to traverse all synthesized images. We do not update data distribution (performing
uniform sampling) in the first 8,000 iterations so as to provide a stable initialization.

Results are summarized in Table 2. In terms of average accuracy (the last column),
our approach outperforms the baseline in every single task. Note that we only use half the
number of iterations compared to the baseline, which demonstrates a favorable efficiency in
exploring the infinite data space. Note that our baseline used on old-styled detector (RCNN)
and classifier (AlexNet) which limited its accuracy, yet recent work [20, 21] reported higher
accuracy than our work with stronger backbones, e.g., [20] used Fast-RCNN for detection
and VGGNet for classification. We chose to report on the same network configuration in
order to make fair comparison to our baseline [28]. Yet our approach is easily generalized to
a wide range of network architectures.

Citation
Citation
{Su, Qi, Li, and Guibas} 2015

Citation
Citation
{Su, Qi, Li, and Guibas} 2015

Citation
Citation
{Su, Qi, Li, and Guibas} 2015

Citation
Citation
{Su, Qi, Li, and Guibas} 2015

Citation
Citation
{Su, Qi, Li, and Guibas} 2015

Citation
Citation
{Xiang, Mottaghi, and Savarese} 2014

Citation
Citation
{Su, Qi, Li, and Guibas} 2015

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2014

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Massa, Marlet, and Aubry} 2016

Citation
Citation
{Poirson, Ammirato, Fu, Liu, Kosecka, and Berg} 2016

Citation
Citation
{Massa, Marlet, and Aubry} 2016

Citation
Citation
{Su, Qi, Li, and Guibas} 2015

8 CHEN ET.AL: SAMPLEAHEAD – ONLINE CLASSIFIER-SAMPLER COMMUNICATION

0 1 2 3 4 5 6

Iteration 104

0

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

Overall

0 1 2 3 4 5 6

Iteration 104

0

0.1

0.2

0.3

0.4

0.5

0.6

Aero

0 1 2 3 4 5 6

Iteration 104

0

0.1

0.2

0.3

0.4

0.5

0.6

Bike

base-4
base-8
base-16
base-24
ours-4
ours-8
ours-16
ours-24

Figure 2: Compared to the baseline, our approach works better in the situation of limited
data sampling. The first 8,000 iterations are shared by both approaches. Each number in the
legend indicates the number of bins (L) in the classification task.

0
180

0.02

360S
am

pl
in

g
P

ro
ba

bi
lit

y

60

(a)

240

0.04

-60 120-180 0

0
180

0.5

360

A
cc

ur
ac

y

60

(b)

240

1

-60 120-180 0

0
180

0.02

360S
am

pl
in

g
P

ro
ba

bi
lit

y

60

(c)

240

0.04

-60 120-180 0

0
180

0.5

360

A
cc

ur
ac

y

60

(d)

240

1

-60 120-180 0

Figure 3: Comparison of sampling probability and accuracy between baseline (left two) and
our approach (right two). The target class is bike, and α and ε on the axes denote azimuth
and elevation angles, respectively. (a) The baseline simply follows the distribution in the
synthesized set, without “realizing” that (b) the center part (α ≈ 180◦) is more difficult. (c)
On the other hand, our approach samples a larger amount of data at this area, leading to (d)
a significant accuracy gain (e.g., see Table 2, 30.8% vs. 23.4% in 24-bin classification).

An interesting property of our approach is the increase in accuracy gain when the number
of bins L goes up. As shown in Figure 2, this happens in both the overall accuracy and
individual classes e.g., bike. This is a side benefit brought by our approach, which mines
more difficult examples to improve the performance in these challenging tasks.

We diagnose our approach with additional experiments. Our approach mainly benefits
from two abilities, i.e., updating sampling distribution during the training process and gen-
erating new data based on the updated distribution. Switching off the former ability turns
it back to the baseline, with 0.1%, 0.9%, 1.7% and 1.9% accuracy drops in L = 4,8,12,24,
respectively. The benefit brought by our approach becomes more significant as the number
of bins goes up (i.e., the task becomes more challenging). This is qualitatively verified in
Figure 3, in which our approach increases the sampling probability of the difficult buckets,
thus improving the overall accuracy. On the other hand, we also disable the latter ability
by only allowing our approach to sample from the original 240 million synthesized images.
This causes 0.1%, 1.1%, 1.2% and 1.7% drops, respectively, because the synthesized dataset
is fixed and the difficult class, when requiring more samples, may come into duplicated train-
ing data. This ablation study shows that both generating and sampling strategies are useful
yet complementary to our approach.

As a final note, our approach does not work well on the class table, which contributes the
largest deficit compared to the baseline. This class has a significant difference from others,

CHEN ET.AL: SAMPLEAHEAD – ONLINE CLASSIFIER-SAMPLER COMMUNICATION 9

Approach aero. bicy. boat bott. bus car chair table moto. sofa train tv mean
Accπ/6 (Baseline) 0.80 0.84 0.62 0.96 0.95 0.85 0.75 0.86 0.88 0.87 0.82 0.90 0.84
Accπ/6 (Ours) 0.84 0.84 0.58 0.96 0.92 0.88 0.91 0.57 0.88 0.87 0.85 0.93 0.84
MedErr (Baseline) 10.2 12.2 18.5 6.5 4.5 6.4 12.4 8.6 13.0 11.0 5.7 13.1 10.2
MedErr (Ours) 8.7 11.5 18.4 6.4 2.4 4.5 7.3 12.5 10.5 8.3 4.4 9.0 8.6

Table 3: Comparison on viewpoint estimation with ground-truth bounding box provided.
Here, Accπ/6 measures accuracy (the higher the better) and MedErr measures error (in de-
grees, the lower the better). Our mean Accπ/6 is mainly impacted by the low value of table
(explained in the texts), without which we outperform the baseline by 0.86 vs. 0.84.

that rotating it by 90◦ merely changes its appearance, thus the 4-bin viewpoint estimation is
just a random guess. In this scenario, the baseline approach memorizes the data distribution,
but our approach actually discards this “cheating benefit” and thus performs “a worse guess”.

• Viewpoint Estimation
The second task is aimed at estimating the viewpoint to the target object. Following [30],

we directly use the trained model previously, and remove the factor of inaccurate object
detection by directly using the ground-truth bounding box for each object. Given the ground-
truth azimuth, elevation and in-plane angles and the predicted values, we compute their
rotation matrices R and R′ accordingly, and the included angle between them is computed
by ρ =

∥∥log(R>R′)
∥∥

F /
√

2, where ‖·‖F is the Frobenius norm. There are two metrics in
evaluation. The first one, named Accπ/6, computes the fraction that ρ 6 π/6; and the second
one, named MedErr, directly measures the median ρ value in degrees.

Results are summarized in Table 3. Our mean Accπ/6 value is just slightly higher than
the baseline. Note that the table class contributes negatively for the same reason analyzed in
the previous task; but in all the remaining classes, our approach performs better. The average
accuracies over the remaining 11 classes are 0.86 vs. 0.84. In addition, the median estimation
error MedErr is significantly reduced (a 15.7% relative drop). All these experiments verify
the effectiveness of our approach in learning from synthesized data.

5 Conclusions
This paper focuses on a new problem, which aims at effectively sampling synthesized data
from an infinitely large parameter space. Our motivation is very simple, i.e., increasing
the probability of generating hard examples so that the classifier gets trained better. To this
end, we insert a novel module named SampleAhead, which maintains a distribution over
the sampling space. In each training unit, the distribution is first updated according to the
current recognition results, and then used to sample synthesized training data and optimize
the vision system. The concept of buckets is introduced to accelerate this process. Although
being simple, our approach works well in a challenging vision task – joint object detection
and pose estimation, especially when the recognition task is difficult (e.g., the number of
azimuth bins is large). Our study demonstrates the effectiveness of nonuniform sampling in
an infinite set, and the advantage is more significant in the scenario of less training time (i.e.,
fewer synthesized data are sampled).

Our algorithm has potential applications in reinforcement learning in the real world. A
typical setting is to place an agent (e.g., a robot) in a room, and facilitate it to learn from
the surrounding world by itself. Our research matches this scenario very well, since the data
space is almost infinite but training time is limited.

Citation
Citation
{Tulsiani and Malik} 2015

10 CHEN ET.AL: SAMPLEAHEAD – ONLINE CLASSIFIER-SAMPLER COMMUNICATION

References
[1] R. Bajcsy. Active perception. Proceedings of the IEEE, 76(8):966–1005, 1988.

[2] Andrew Blake and Alan Yuille. Active vision. MIT press, 1993.

[3] D.J. Butler, J. Wulff, G.B. Stanley, and M.J. Black. A naturalistic open source movie
for optical flow evaluation. In European Conference on Computer Vision, 2012.

[4] A.X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese,
M. Savva, S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

[5] W. Chen, H. Wang, Y. Li, H. Su, Z. Wang, C. Tu, D. Lischinski, D. Cohen-Or, and
B. Chen. Synthesizing training images for boosting human 3d pose estimation. In
International Conference on 3D Vision, 2016.

[6] D.C. Ciresan, U. Meier, L.M. Gambardella, and J. Schmidhuber. Deep, big, simple
neural nets for handwritten digit recognition. Neural Computation, 22(12):3207–3220,
2010.

[7] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra. Embodied question
answering. arXiv preprint arXiv:1711.11543, 2017.

[8] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009.

[9] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, and A. Zisserman. The pascal
visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):
303–338, 2010.

[10] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan. Object detection
with discriminatively trained part-based models. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 32(9):1627–1645, 2010.

[11] Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119–
139, 1997.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Computer Vision and Pattern Recogni-
tion, 2014.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, 2014.

[14] D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox, and A. Farhadi. Iqa: Vi-
sual question answering in interactive environments. arXiv preprint arXiv:1712.03316,
2017.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional net-
works for visual recognition. In European Conference on Computer Vision. Springer,
2014.

CHEN ET.AL: SAMPLEAHEAD – ONLINE CLASSIFIER-SAMPLER COMMUNICATION 11

[16] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C.L. Zitnick, and R. Girshick.
Clevr: A diagnostic dataset for compositional language and elementary visual reason-
ing. In Computer Vision and Pattern Recognition, 2017.

[17] A. Krizhevsky, I. Sutskever, and G.E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems,
2012.

[18] Y LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[19] I. Loshchilov and F. Hutter. Online batch selection for faster training of neural net-
works. arXiv preprint arXiv:1511.06343, 2015.

[20] F. Massa, R. Marlet, and M. Aubry. Crafting a multi-task cnn for viewpoint estimation.
arXiv preprint arXiv:1609.03894, 2016.

[21] P. Poirson, P. Ammirato, C.Y. Fu, W. Liu, J. Kosecka, and A.C. Berg. Fast single shot
detection and pose estimation. In International Conference on 3D Vision, 2016.

[22] W. Qiu and A. Yuille. Unrealcv: Connecting computer vision to unreal engine. In
Workshops on European Conference on Computer Vision, 2016.

[23] E. Richardson, M. Sela, and R. Kimmel. 3d face reconstruction by learning from
synthetic data. In International Conference on 3D Vision, 2016.

[24] H.A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(1):23–38, 1998.

[25] A. Shrivastava, A. Gupta, and R. Girshick. Training region-based object detectors with
online hard example mining. In Computer Vision and Pattern Recognition, 2016.

[26] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. Learning from
simulated and unsupervised images through adversarial training. In Computer Vision
and Pattern Recognition, 2017.

[27] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, and F. Moreno-Noguer. Fracking deep
convolutional image descriptors. arXiv preprint arXiv:1412.6537, 2014.

[28] H. Su, C.R. Qi, Y. Li, and L.J. Guibas. Render for cnn: Viewpoint estimation in images
using cnns trained with rendered 3d model views. In International Conference on
Computer Vision, 2015.

[29] K.K. Sung. Learning and example selection for object and pattern detection. 1996.

[30] S. Tulsiani and J. Malik. Viewpoints and keypoints. In Computer Vision and Pattern
Recognition, 2015.

[31] G. Varol, J. Romero, X. Martin, N. Mahmood, M.J. Black, I. Laptev, and C. Schmid.
Learning from synthetic humans. In Computer Vision and Pattern Recognition, 2017.

[32] X. Wang and A. Gupta. Unsupervised learning of visual representations using videos.
In International Conference on Computer Vision, 2015.

12 CHEN ET.AL: SAMPLEAHEAD – ONLINE CLASSIFIER-SAMPLER COMMUNICATION

[33] Z. Wu, S. Song, A. Khosla, X. Tang, and J. Xiao. 3d shapenets for 2.5d object recog-
nition and next-best-view prediction. arXiv preprint arXiv:1406.5670, 2014.

[34] Y. Xiang, R. Mottaghi, and S. Savarese. Beyond pascal: A benchmark for 3d object
detection in the wild. In Winter Conference on Applications of Computer Vision, 2014.

[35] Yi Zhang, Weichao Qiu, Qi Chen, Xiaolin Hu, and Alan Yuille. Unrealstereo: A syn-
thetic dataset for analyzing stereo vision. arXiv preprint arXiv:1612.04647, 2016.

